Results 1  10
of
221
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3229 (69 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
The model checker SPIN
 IEEE Transactions on Software Engineering
, 1997
"... Abstract—SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design errors in applications ranging from highlevel descriptions of distributed algorithms to detailed code for controlling telephone exchanges. This paper gives an overview of ..."
Abstract

Cited by 1510 (26 self)
 Add to MetaCart
(Show Context)
Abstract—SPIN is an efficient verification system for models of distributed software systems. It has been used to detect design errors in applications ranging from highlevel descriptions of distributed algorithms to detailed code for controlling telephone exchanges. This paper gives an overview of the design and structure of the verifier, reviews its theoretical foundation, and gives an overview of significant practical applications. Index Terms—Formal methods, program verification, design verification, model checking, distributed systems, concurrency.
Counterexampleguided Abstraction Refinement
, 2000
"... We present an automatic iterative abstractionrefinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new symb ..."
Abstract

Cited by 849 (71 self)
 Add to MetaCart
We present an automatic iterative abstractionrefinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new symbolic techniques which analyze such counterexamples and refine the abstract model correspondingly.
Formal Methods: State of the Art and Future Directions
 ACM Computing Surveys
, 1996
"... ing with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, N ..."
Abstract

Cited by 427 (6 self)
 Add to MetaCart
ing with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 8690481, or permissions@acm.org. 2 \Delta E.M. Clarke and J.M. Wing About ProgramsMechanical verification, Specification techniques; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical LogicMechanical theorem proving General Terms: Software engineering, formal methods, hardware verification Additional Key Words and Phrases: Software specification, model checking, theorem proving 1. INTRODUCTION Hardware and software systems will inevitably grow in scale and functionality. Because of this increase in complexity, the likelihood of subtle errors is much greater. Moreover, some of these errors may cause catastrophic loss of money, time, or even huma...
Symbolic model checking for sequential circuit verification
 IEEE TRANSACTIONS ON COMPUTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
, 1994
"... The temporal logic model checking algorithm of Clarke, Emerson, and Sistla [17] is modified to represent state graphs using binary decision diagrams (BDD’s) [7] and partitioned trunsirion relations [lo], 1111. Because this representation captures some of the regularity in the state space of circuit ..."
Abstract

Cited by 271 (12 self)
 Add to MetaCart
(Show Context)
The temporal logic model checking algorithm of Clarke, Emerson, and Sistla [17] is modified to represent state graphs using binary decision diagrams (BDD’s) [7] and partitioned trunsirion relations [lo], 1111. Because this representation captures some of the regularity in the state space of circuits with data path logic, we are able to verify circuits with an extremely large number of states. We demonstrate this new technique on a synchronous pipelined design with approximately 5 x 10^120 states. Our model checking algorithm handles full CTL with fairness constraints. Consequently, we are able to express a number of important liveness and fairness properties, which would otherwise not be expressible in CTL. We give empirical results on the performance of the algorithm applied to both synchronous and asynchronous circuits with data path logic.
Boolean and Cartesian Abstraction for Model Checking C Programs
, 2001
"... The problem of model checking a specification in form of a C program with recursive procedures and many thousands of lines of code has not been addressed before. In this paper, we show how we attack this problem using an abstraction that is formalized with the Cartesian abstraction. It is implemente ..."
Abstract

Cited by 200 (15 self)
 Add to MetaCart
The problem of model checking a specification in form of a C program with recursive procedures and many thousands of lines of code has not been addressed before. In this paper, we show how we attack this problem using an abstraction that is formalized with the Cartesian abstraction. It is implemented through a sourcetosource transformation into a `Boolean' C program; we give an algorithm to compute the transformation with a cost that is exponential in its theoretical worstcase complexity but feasible in practice.
Iterative Context Bounding for Systematic Testing of Multithreaded Programs
, 2007
"... Multithreaded programs are difficult to get right because of unexpected interaction between concurrently executing threads. Traditional testing methods are inadequate for catching subtle concurrency errors which manifest themselves late in the development cycle and postdeployment. Model checking or ..."
Abstract

Cited by 178 (16 self)
 Add to MetaCart
Multithreaded programs are difficult to get right because of unexpected interaction between concurrently executing threads. Traditional testing methods are inadequate for catching subtle concurrency errors which manifest themselves late in the development cycle and postdeployment. Model checking or systematic exploration of program behavior is a promising alternative to traditional testing methods. However, it is difficult to perform systematic search on large programs as the number of possible program behaviors grows exponentially with the program size. Confronted with this stateexplosion problem, traditional model checkers perform iterative depthbounded search. Although effective for messagepassing software, iterative depthbounding is inadequate for multithreaded software. This paper proposes iterative contextbounding, a new search algorithm that systematically explores the executions of a multithreaded program in an order that prioritizes executions with fewer context switches. We distinguish between preempting and nonpreempting context switches, and show that bounding the number of preempting context switches to a small number significantly alleviates the state explosion, without limiting the depth of explored executions. We show both theoretically and empirically that contextbounded search is an effective method for exploring the behaviors of multithreaded programs. We have implemented our algorithm in two model checkers and applied it to a number of realworld multithreaded programs. Our implementation uncovered 9 previously unknown bugs in our benchmarks, each of which was exposed by an execution with at most 2 preempting context switches. Our initial experience with the technique is encouraging and demonstrates that iterative contextbounding is a significant improvement over existing techniques for testing multithreaded programs.
NUSMV: a new symbolic model checker
 International Journal on Software Tools for Technology Transfer
, 2000
"... This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed de ..."
Abstract

Cited by 167 (22 self)
 Add to MetaCart
This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed description of the NUSMV functionalities, architecture, and implementation.
Applying SAT methods in unbounded symbolic model checking
, 2002
"... Abstract. A method of symbolic model checking is introduced that uses conjunctive normal form (CNF) rather than binary decision diagrams (BDD’s) and uses a SATbased approach to quantifier elimination. This method is compared to a traditional BDDbased model checking approach using a set of benchmar ..."
Abstract

Cited by 162 (2 self)
 Add to MetaCart
(Show Context)
Abstract. A method of symbolic model checking is introduced that uses conjunctive normal form (CNF) rather than binary decision diagrams (BDD’s) and uses a SATbased approach to quantifier elimination. This method is compared to a traditional BDDbased model checking approach using a set of benchmark problems derived from the compositional verification of a commercial microprocessor design. 1