Results 1  10
of
24
Engineering formal metatheory
 In ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 2008
"... Machinechecked proofs of properties of programming languages have become a critical need, both for increased confidence in large and complex designs and as a foundation for technologies such as proofcarrying code. However, constructing these proofs remains a black art, involving many choices in th ..."
Abstract

Cited by 83 (9 self)
 Add to MetaCart
Machinechecked proofs of properties of programming languages have become a critical need, both for increased confidence in large and complex designs and as a foundation for technologies such as proofcarrying code. However, constructing these proofs remains a black art, involving many choices in the formulation of definitions and theorems that make a huge cumulative difference in the difficulty of carrying out large formal developments. The representation and manipulation of terms with variable binding is a key issue. We propose a novel style for formalizing metatheory, combining locally nameless representation of terms and cofinite quantification of free variable names in inductive definitions of relations on terms (typing, reduction,...). The key technical insight is that our use of cofinite quantification obviates the need for reasoning about equivariance (the fact that free names can be renamed in derivations); in particular, the structural induction principles of relations
Monadic Presentations of Lambda Terms Using Generalized Inductive Types
 In Computer Science Logic
, 1999
"... . We present a denition of untyped terms using a heterogeneous datatype, i.e. an inductively dened operator. This operator can be extended to a Kleisli triple, which is a concise way to verify the substitution laws for calculus. We also observe that repetitions in the denition of the monad as wel ..."
Abstract

Cited by 77 (15 self)
 Add to MetaCart
. We present a denition of untyped terms using a heterogeneous datatype, i.e. an inductively dened operator. This operator can be extended to a Kleisli triple, which is a concise way to verify the substitution laws for calculus. We also observe that repetitions in the denition of the monad as well as in the proofs can be avoided by using wellfounded recursion and induction instead of structural induction. We extend the construction to the simply typed calculus using dependent types, and show that this is an instance of a generalization of Kleisli triples. The proofs for the untyped case have been checked using the LEGO system. Keywords. Type Theory, inductive types, calculus, category theory. 1 Introduction The metatheory of substitution for calculi is interesting maybe because it seems intuitively obvious but becomes quite intricate if we take a closer look. [Hue92] states seven formal properties of substitution which are then used to prove a general substitution theor...
Some lambda calculus and type theory formalized
 Journal of Automated Reasoning
, 1999
"... Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention redex positions or residuals. Then we outline the meta theory of Pure Type Systems, leading to the strengthening lemma. One novelty is our use of named variables for the formalization. Along the way we point out what we feel has been learned about general issues of formalizing mathematics, emphasizing the search for formal definitions that are convenient for formal proof and convincingly represent the intended informal concepts.
Intuitionistic Model Constructions and Normalization Proofs
, 1998
"... We investigate semantical normalization proofs for typed combinatory logic and weak calculus. One builds a model and a function `quote' which inverts the interpretation function. A normalization function is then obtained by composing quote with the interpretation function. Our models are just like ..."
Abstract

Cited by 44 (7 self)
 Add to MetaCart
We investigate semantical normalization proofs for typed combinatory logic and weak calculus. One builds a model and a function `quote' which inverts the interpretation function. A normalization function is then obtained by composing quote with the interpretation function. Our models are just like the intended model, except that the function space includes a syntactic component as well as a semantic one. We call this a `glued' model because of its similarity with the glueing construction in category theory. Other basic type constructors are interpreted as in the intended model. In this way we can also treat inductively defined types such as natural numbers and Brouwer ordinals. We also discuss how to formalize terms, and show how one model construction can be used to yield normalization proofs for two different typed calculi  one with explicit and one with implicit substitution. The proofs are formalized using MartinLof's type theory as a meta language and mechanized using the A...
Constructions, Inductive Types and Strong Normalization
, 1993
"... This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notio ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and typechecking, based on the equalityasjudgement presentation. We present a settheoretic notion of model, CCstructures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to nonalgebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a nontrivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the...
Type Theory and Programming
, 1994
"... This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an im ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an implementation, ALF, of this theory. Finally, a few small tutorial examples in ALF are given.
Residual theory in λcalculus: A formal development
 Journal of Functional Programming
, 1994
"... Abstract. We present the complete development, in Gallina, of the residual theory of βreduction in pure λcalculus. The main result is the Prism Theorem, and its corollary Lévy’s Cube Lemma, a strong form of the parallelmoves lemma, itself a key step towards the confluence theorem and its usual co ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
Abstract. We present the complete development, in Gallina, of the residual theory of βreduction in pure λcalculus. The main result is the Prism Theorem, and its corollary Lévy’s Cube Lemma, a strong form of the parallelmoves lemma, itself a key step towards the confluence theorem and its usual corollaries (ChurchRosser, uniqueness of normal forms). Gallina is the specification language of the Coq Proof Assistant[7, 11]. It is a specific concrete syntax for its abstract framework, the Calculus of Inductive Constructions[15]. It may be thought of as a smooth mixture of higherorder predicate calculus with recursive definitions, inductively defined datatypes, and inductive predicate definitions reminiscent of logic programming. The development presented here was fully checked in the current distribution version Coq V5.8. We just state the lemmas in the order in which they are proved, omitting the proof justifications. The full transcript is available as a standard library in the distribution of Coq. 1
Parametric HigherOrder Abstract Syntax for Mechanized Semantics
"... We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language’s binding constructs. Unlike HOAS, PHOAS types are definable in generalpurpose type theories that support traditional functional programming, like Coq’s Calculus of Inductive Constructions. We walk through how Coq can be used to develop certified, executable program transformations over several staticallytyped functional programming languages formalized with PHOAS; that is, each transformation has a machinechecked proof of type preservation and semantic preservation. Our examples include CPS translation and closure conversion for simplytyped lambda calculus, CPS translation for System F, and translation from a language with MLstyle pattern matching to a simpler language with no variablearity binding constructs. By avoiding the syntactic hassle associated with firstorder representation techniques, we achieve a very high degree of proof automation. Categories and Subject Descriptors F.3.1 [Logics and meanings
Short Proofs of Normalization for the simplytyped λcalculus, permutative conversions and Gödel's T
 TO APPEAR: ARCHIVE FOR MATHEMATICAL LOGIC
, 1998
"... Inductive characterizations of the sets of terms, the subset of strongly normalizing terms and normal forms are studied in order to reprove weak and strong normalization for the simplytyped λcalculus and for an extension by sum types with permutative conversions. The analogous treatment of a new sy ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
Inductive characterizations of the sets of terms, the subset of strongly normalizing terms and normal forms are studied in order to reprove weak and strong normalization for the simplytyped λcalculus and for an extension by sum types with permutative conversions. The analogous treatment of a new system with generalized applications inspired by von Plato's generalized elimination rules in natural deduction shows the flexibility of the approach which does not use the strong computability/candidate style a la Tait and Girard. It is also shown that the extension of the system with permutative conversions by rules is still strongly normalizing, and likewise for an extension of the system of generalized applications by a rule of "immediate simplification". By introducing an innitely branching inductive rule the method even extends to Gödel's T.
A thirdorder representation of the λµCalculus
 Electronic Notes in Theoretical Computer Science
, 2001
"... Abstract. Higherorder logical frameworks provide a powerful technology to reason about object languages with binders. This will be demonstrated for the case of the λµcalculus with two different binders which can most elegantly be represented using a thirdorder constant. Since cases of third and ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
Abstract. Higherorder logical frameworks provide a powerful technology to reason about object languages with binders. This will be demonstrated for the case of the λµcalculus with two different binders which can most elegantly be represented using a thirdorder constant. Since cases of third and higherorder encodings are very rare in comparison with those of second order, a secondorder representation is given as well and equivalence to the thirdorder representation is proven formally. 1