Results 1  10
of
1,256
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 266 (5 self)
 Add to MetaCart
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further difficulty is that inaccuracies in quantum state transformations throughout the computation accumulate, rendering long computations unreliable. However, these obstacles may not be as formidable as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed on quantum data encoded by quantum errorcorrecting codes without decoding this data. 1.
Quantum amplitude amplification and estimation
, 2002
"... Abstract. Consider a Boolean function χ: X → {0, 1} that partitions set X between its good and bad elements, where x is good if χ(x) = 1 and bad otherwise. Consider also a quantum algorithm A such that A0 〉 = � x∈X αxx 〉 is a quantum superposition of the elements of X, and let a denote the proba ..."
Abstract

Cited by 172 (14 self)
 Add to MetaCart
(Show Context)
Abstract. Consider a Boolean function χ: X → {0, 1} that partitions set X between its good and bad elements, where x is good if χ(x) = 1 and bad otherwise. Consider also a quantum algorithm A such that A0 〉 = � x∈X αxx 〉 is a quantum superposition of the elements of X, and let a denote the probability that a good element is produced if A0 〉 is measured. If we repeat the process of running A, measuring the output, and using χ to check the validity of the result, we shall expect to repeat 1/a times on the average before a solution is found. Amplitude amplification is a process that allows to find a good x after an expected number of applications of A and its inverse which is proportional to 1 / √ a, assuming algorithm A makes no measurements. This is a generalization of Grover’s searching algorithm in which A was restricted to producing an equal superposition of all members of X and we had a promise that a single x existed such that χ(x) = 1. Our algorithm works whether or not the value of a is known ahead of time. In case the value of a is known, we can find a good x after a number of applications of A and its inverse which is proportional to 1 / √ a even in the worst case. We show that this quadratic speedup can also be obtained for a large family of search problems for which good classical heuristics exist. Finally, as our main result, we combine ideas from Grover’s and Shor’s quantum algorithms to perform amplitude estimation, a process that allows to estimate the value of a. We apply amplitude estimation to the problem of approximate counting, in which we wish to estimate the number of x ∈ X such that χ(x) = 1. We obtain optimal quantum algorithms in a variety of settings. 1.
Quantum vs. classical communication and computation
 Proc. 30th Ann. ACM Symp. on Theory of Computing (STOC ’98
, 1998
"... We present a simple and general simulation technique that transforms any blackbox quantum algorithm (à la Grover’s database search algorithm) to a quantum communication protocol for a related problem, in a way that fully exploits the quantum parallelism. This allows us to obtain new positive and ne ..."
Abstract

Cited by 159 (15 self)
 Add to MetaCart
We present a simple and general simulation technique that transforms any blackbox quantum algorithm (à la Grover’s database search algorithm) to a quantum communication protocol for a related problem, in a way that fully exploits the quantum parallelism. This allows us to obtain new positive and negative results. The positive results are novel quantum communication protocols that are built from nontrivial quantum algorithms via this simulation. These protocols, combined with (old and new) classical lower bounds, are shown to provide the first asymptotic separation results between the quantum and classical (probabilistic) twoparty communication complexity models. In particular, we obtain a quadratic separation for the boundederror model, and an exponential separation for the zeroerror model. The negative results transform known quantum communication lower bounds to computational lower bounds in the blackbox model. In particular, we show that the quadratic speedup achieved by Grover for the OR function is impossible for the PARITY function or the MAJORITY function in the boundederror model, nor is it possible for the OR function itself in the exact case. This dichotomy naturally suggests a study of boundeddepth predicates (i.e. those in the polynomial hierarchy) between OR and MAJORITY. We present blackbox algorithms that achieve near quadratic speed up for all such predicates.
Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance
, 2001
"... The number of steps any classical computer requires in order to find the prime factors of an ldigit integer N increases exponentially with l, at least using algorithms [1] known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying th ..."
Abstract

Cited by 152 (5 self)
 Add to MetaCart
The number of steps any classical computer requires in order to find the prime factors of an ldigit integer N increases exponentially with l, at least using algorithms [1] known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes [1, 2]. Quantum computers [3], however, could factor integers in only polynomial time, using Shor’s quantum factoring algorithm [4, 5, 6]. Although important for the study of quantum computers [7], experimental demonstration of this algorithm has proved elusive [8, 9, 10]. Here we report an implementation of the simplest instance of Shor’s algorithm: factorization of N=15 (whose prime factors are 3 and 5). We use seven spin1/2 nuclei in a molecule as quantum bits [11, 12], which can be manipulated with room temperature liquid state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to many quantum bit systems [13], but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum
Tight bounds on quantum searching
, 1996
"... We provide a tight analysis of Grover’s algorithm for quantum database searching. We give a simple closedform formula for the probability of success after any given number of iterations of the algorithm. This allows us to determine the number of iterations necessary to achieve almost certainty of f ..."
Abstract

Cited by 126 (10 self)
 Add to MetaCart
We provide a tight analysis of Grover’s algorithm for quantum database searching. We give a simple closedform formula for the probability of success after any given number of iterations of the algorithm. This allows us to determine the number of iterations necessary to achieve almost certainty of finding the answer. Furthermore, we analyse the behaviour of the algorithm when the element to be found appears more than once in the table and we provide a new algorithm to find such an element even when the number of solutions is not known ahead of time. Finally, we provide a lower bound on the efficiency of any possible quantum database searching algorithm and we show that Grover’s algorithm comes within 2.62 % of being optimal.
Quantum Walks on Graphs
, 2002
"... We set the ground for a theory of quantum walks on graphsthe generalization of random walks on finite graphs to the quantum world. Such quantum walks do not converge to any stationary distribution, as they are unitary and reversible. However, by suitably relaxing the definition, we can obtain a meas ..."
Abstract

Cited by 122 (6 self)
 Add to MetaCart
(Show Context)
We set the ground for a theory of quantum walks on graphsthe generalization of random walks on finite graphs to the quantum world. Such quantum walks do not converge to any stationary distribution, as they are unitary and reversible. However, by suitably relaxing the definition, we can obtain a measure of how fast the quantum walk spreads or how confined the quantum walk stays in a small neighborhood. We give definitions of mixing time, filling time, dispersion time. We show that in all these measures, the quantum walk on the cycle is almost quadratically faster then its classical correspondent. On the other hand, we give a lower bound on the possible speed up by quantum walks for general graphs, showing that quantum walks can be at most polynomially faster than their classical counterparts.
Quantum counting
 In Proceedings of the 25th International Colloquium on Automata, Languages and Programming
, 1998
"... Abstract. We study some extensions of Grover’s quantum searching algorithm. First, we generalize the Grover iteration in the light of a concept called amplitude amplification. Then, we show that the quadratic speedup obtained by the quantum searching algorithm over classical brute force can still be ..."
Abstract

Cited by 119 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We study some extensions of Grover’s quantum searching algorithm. First, we generalize the Grover iteration in the light of a concept called amplitude amplification. Then, we show that the quadratic speedup obtained by the quantum searching algorithm over classical brute force can still be obtained for a large family of search problems for which good classical heuristics exist. Finally, as our main result, we combine ideas from Grover’s and Shor’s quantum algorithms to perform approximate counting, which can be seen as an amplitude estimation process. 1