Results 1  10
of
349
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one. We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
(Show Context)
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Quantum Error Correction Via Codes Over GF(4)
, 1997
"... The problem of finding quantumerrorcorrecting codes is transformed into the problem of finding additive codes over the field GF(4) which are selforthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on s ..."
Abstract

Cited by 304 (18 self)
 Add to MetaCart
The problem of finding quantumerrorcorrecting codes is transformed into the problem of finding additive codes over the field GF(4) which are selforthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 264 (5 self)
 Add to MetaCart
(Show Context)
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further difficulty is that inaccuracies in quantum state transformations throughout the computation accumulate, rendering long computations unreliable. However, these obstacles may not be as formidable as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed on quantum data encoded by quantum errorcorrecting codes without decoding this data. 1.
Faulttolerant quantum computation by anyons
, 2003
"... A twodimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation ..."
Abstract

Cited by 229 (3 self)
 Add to MetaCart
(Show Context)
A twodimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation is faulttolerant by its physical nature.
Mixed state entanglement and quantum error correction
 Phys. Rev., A
, 1996
"... Entanglement purification protocols (EPP) and quantum errorcorrecting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a bipartite mixed state M; with a QECC, an arbitra ..."
Abstract

Cited by 185 (7 self)
 Add to MetaCart
(Show Context)
Entanglement purification protocols (EPP) and quantum errorcorrecting codes (QECC) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a bipartite mixed state M; with a QECC, an arbitrary quantum state ξ〉 can be transmitted at some rate Q through a noisy channel χ without degradation. We prove that an EPP involving oneway classical communication and acting on mixed state ˆ M(χ) (obtained by sharing halves of EPR pairs through a channel χ) yields a QECC on χ with rate Q = D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts D1(M) and D2(M) that can be locally distilled from it by EPPs using one and twoway classical communication respectively, and give an exact expression for E(M) when M is Belldiagonal. While EPPs require classical communication, quantum channel coding does not, and we prove Q is not increased by adding oneway classical communication. However, both D and Q can be increased by adding twoway communication. We show that certain noisy quantum channels, for example a 50 % depolarizing channel, can be used for reliable transmission of quantum states if twoway communication is available, but cannot be used if only oneway communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5bit singleerrorcorrecting quantum block code. We prove that iff a QECC results in perfect fidelity for the case of the noerror error syndrome the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. 1 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c 1
Reliable quantum computers
 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
, 1998
"... The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mist ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
(Show Context)
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 106 qubits, with a probability of error per quantum gate of order 106, would be a formidable factoring engine. Even a smaller lessaccurate quantum computer would be able to perform many useful tasks. This paper is based on a talk presented at the ITP Conference on Quantum Coherence
Quantum information theory
, 1998
"... We survey the field of quantum information theory. In particular, we discuss the fundamentals of the field, source coding, quantum errorcorrecting codes, capacities of quantum channels, measures of entanglement, and quantum cryptography. ..."
Abstract

Cited by 102 (2 self)
 Add to MetaCart
We survey the field of quantum information theory. In particular, we discuss the fundamentals of the field, source coding, quantum errorcorrecting codes, capacities of quantum channels, measures of entanglement, and quantum cryptography.