Results 1  10
of
159
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 369 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
A PublicKey Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve Cryptography
, 2004
"... We present the first known implementation of elliptic curve cryptography over F2 p for sensor networks based on the 8bit, 7.3828MHz MICA2 mote. Through instrumentation of UC Berkeley's TinySec module, we argue that, although secretkey cryptography has been tractable in this domain for some time, ..."
Abstract

Cited by 183 (3 self)
 Add to MetaCart
We present the first known implementation of elliptic curve cryptography over F2 p for sensor networks based on the 8bit, 7.3828MHz MICA2 mote. Through instrumentation of UC Berkeley's TinySec module, we argue that, although secretkey cryptography has been tractable in this domain for some time, there has remained a need for an efficient, secure mechanism for distribution of secret keys among nodes. Although publickey infrastructure has been thought impractical, we argue, through analysis of our own implementation for TinyOS of multiplication of points on elliptic curves, that publickey infrastructure is, in fact, viable for TinySec keys' distribution, even on the MICA2. We demonstrate that public keys can be generated within 34 seconds, and that shared secrets can be distributed among nodes in a sensor network within the same, using just over 1 kilobyte of SRAM and 34 kilobytes of ROM.
Constructive And Destructive Facets Of Weil Descent On Elliptic Curves
 JOURNAL OF CRYPTOLOGY
, 2000
"... In this paper we look in detail at the curves which arise in the method of Galbraith and Smart for producing curves in the Weil restriction of an elliptic curve over a finite field of characteristic two of composite degree. We explain how this method can be used to construct hyperelliptic cryptosys ..."
Abstract

Cited by 139 (12 self)
 Add to MetaCart
In this paper we look in detail at the curves which arise in the method of Galbraith and Smart for producing curves in the Weil restriction of an elliptic curve over a finite field of characteristic two of composite degree. We explain how this method can be used to construct hyperelliptic cryptosystems which could be as secure as a cryptosystems based on the original elliptic curve. On the other hand, we show that this may provide a way of attacking the original elliptic curve cryptosystem using recent advances in the study of the discrete logarithm problem on hyperelliptic curves. We examine the resulting higher genus curves in some detail and propose an additional check on elliptic curve systems defined over fields of characteristic two so as to make them immune from the methods in this paper. 1. Introduction In this paper we address two problems: How to construct hyperelliptic cryptosystems and how to attack elliptic curve cryptosystems defined over fields of even characteristic ...
The Elliptic Curve Digital Signature Algorithm (ECDSA)
, 1999
"... The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideratio ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem, no subexponentialtime algorithm is known for the elliptic curve discrete logarithm problem. For this reason, the strengthperkeybit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA, and discusses related security, implementation, and interoperability issues. Keywords: Signature schemes, elliptic curve cryptography, DSA, ECDSA.
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
The XTR public key system
, 2000
"... This paper introduces the XTR public key system. XTR is based on a new method to represent elements of a subgroup of a multiplicative group of a finite field. Application of XTR in cryptographic protocols leads to substantial savings both in communication and computational overhead without compromis ..."
Abstract

Cited by 80 (11 self)
 Add to MetaCart
This paper introduces the XTR public key system. XTR is based on a new method to represent elements of a subgroup of a multiplicative group of a finite field. Application of XTR in cryptographic protocols leads to substantial savings both in communication and computational overhead without compromising security.
An algorithm for solving the discrete log problem on hyperelliptic curves
, 2000
"... Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we de ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we describe our breaking of a cryptosystem based on a curve of genus 6 recently proposed by Koblitz. 1
A General Framework for Subexponential Discrete Logarithm Algorithms in Groups of Unknown Order
, 2000
"... We develop a generic framework for the computation of logarithms in nite class groups. The model allows to formulate a probabilistic algorithm based on collecting relations in an abstract way independently of the specific type of group to which it is applied, and to prove a subexponential running ti ..."
Abstract

Cited by 54 (9 self)
 Add to MetaCart
We develop a generic framework for the computation of logarithms in nite class groups. The model allows to formulate a probabilistic algorithm based on collecting relations in an abstract way independently of the specific type of group to which it is applied, and to prove a subexponential running time if a certain smoothness assumption is verified. The algorithm proceeds in two steps: First, it determines the abstract group structure as a product of cyclic groups; second, it computes an explicit isomorphism, which can be used to extract discrete logarithms.
A double large prime variation for small genus hyperelliptic index calculus
 Mathematics of Computation
, 2004
"... Abstract. In this article, we examine how the index calculus approach for computing discrete logarithms in small genus hyperelliptic curves can be improved by introducing a double large prime variation. Two algorithms are presented. The first algorithm is a rather natural adaptation of the double la ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
Abstract. In this article, we examine how the index calculus approach for computing discrete logarithms in small genus hyperelliptic curves can be improved by introducing a double large prime variation. Two algorithms are presented. The first algorithm is a rather natural adaptation of the double large prime variation to the intended context. On heuristic and experimental grounds, it seems to perform quite well but lacks a complete and precise analysis. Our second algorithm is a considerably simplified variant, which can be analyzed easily. The resulting complexity improves on the fastest known algorithms. Computer experiments show that for hyperelliptic curves of genus three, our first algorithm surpasses Pollard’s Rho method even for rather small field sizes. 1.
Supersingular abelian varieties in cryptology
 Advances in Cryptology  CRYPTO 2002
"... Abstract. For certain security applications, including identity based encryption and short signature schemes, it is useful to have abelian varieties with security parameters that are neither too small nor too large. Supersingular abelian varieties are natural candidates for these applications. This ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
Abstract. For certain security applications, including identity based encryption and short signature schemes, it is useful to have abelian varieties with security parameters that are neither too small nor too large. Supersingular abelian varieties are natural candidates for these applications. This paper determines exactly which values can occur as the security parameters of supersingular abelian varieties (in terms of the dimension of the abelian variety and the size of the finite field), and gives constructions of supersingular abelian varieties that are optimal for use in cryptography. 1