Results 1 
5 of
5
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
(Show Context)
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Yıldırım, Small gaps between primes or almost primes
"... Abstract. Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that (pn+1 − pn) lim inf =0. n→ ∞ log pn We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of ex ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that (pn+1 − pn) lim inf =0. n→ ∞ log pn We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→ ∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of the ElliottHalberstam Conjecture is true, then the above bound can be improved to 6. 1.
REMARKS ON GENERALIZED RAMANUJAN SUMS AND EVEN FUNCTIONS
, 2006
"... Abstract. We prove a simple formula for the main value of reven functions and give applications of it. Considering the generalized Ramanujan sums cA(n, r) involving regular systems A of divisors we show that it is not possible to develop a Fourier theory with respect to cA(n, r), like in the the us ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We prove a simple formula for the main value of reven functions and give applications of it. Considering the generalized Ramanujan sums cA(n, r) involving regular systems A of divisors we show that it is not possible to develop a Fourier theory with respect to cA(n, r), like in the the usual case of classical Ramanujan sums c(n, r).
On the second moment for primes in an arithmetic progression, Acta Arithmetica C.1
, 2001
"... Abstract. Assuming the Generalized Riemann Hypothesis, we obtain a lower bound within a constant factor of the conjectured asymptotic result for the second moment for primes in an individual arithmetic progression in short intervals. Previous results were averaged over all progression of a given mod ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Assuming the Generalized Riemann Hypothesis, we obtain a lower bound within a constant factor of the conjectured asymptotic result for the second moment for primes in an individual arithmetic progression in short intervals. Previous results were averaged over all progression of a given modulus. The method uses a short divisor sum approximation for the von Mangoldt function, together with some new results for binary correlations of this divisor sum approximation in arithmetic progressions. 1. Introduction and Statement of