Results 1 
4 of
4
Frobenius Pseudoprimes
 Math. Comp
"... Abstract. The proliferation of probable prime tests in recent years has produced a plethora of definitions with the word “pseudoprime ” in them. Examples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes and ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. The proliferation of probable prime tests in recent years has produced a plethora of definitions with the word “pseudoprime ” in them. Examples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes and Perrin pseudoprimes. Though these tests represent a wealth of ideas, they exist as a hodgepodge of definitions rather than as examples of a more general theory. It is the goal of this paper to present a way of viewing many of these tests as special cases of a general principle, as well as to reformulate them in the context of finite fields. One aim of the reformulation is to enable the creation of stronger tests; another is to aid in proving results about large classes of pseudoprimes. 1.
Finding strong pseudoprimes to several bases. II,Math
 Department of Mathematics, Anhui Normal University
"... Abstract. Define ψm to be the smallest strong pseudoprime to all the first m prime bases. If we know the exact value of ψm, we will have, for integers n<ψm, a deterministic efficient primality testing algorithm which is easy to implement. Thanks to Pomerance et al. and Jaeschke, the ψm are known for ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. Define ψm to be the smallest strong pseudoprime to all the first m prime bases. If we know the exact value of ψm, we will have, for integers n<ψm, a deterministic efficient primality testing algorithm which is easy to implement. Thanks to Pomerance et al. and Jaeschke, the ψm are known for 1 ≤ m ≤ 8. Upper bounds for ψ9,ψ10 and ψ11 were first given by Jaeschke, and those for ψ10 and ψ11 were then sharpened by the first author in his previous paper (Math. Comp. 70 (2001), 863–872). In this paper, we first follow the first author’s previous work to use biquadratic residue characters and cubic residue characters as main tools to tabulate all strong pseudoprimes (spsp’s) n < 1024 to the first five or six prime bases, which have the form n = pq with p, q odd primes and q − 1= k(p−1),k =4/3, 5/2, 3/2, 6; then we tabulate all Carmichael numbers < 1020, to the first six prime bases up to 13, which have the form n = q1q2q3 with each prime factor qi ≡ 3 mod 4. There are in total 36 such Carmichael numbers, 12 numbers of which are also spsp’s to base 17; 5 numbers are spsp’s to bases 17 and 19; one number is an spsp to the first 11 prime bases up to 31. As a result the upper bounds for ψ9,ψ10 and ψ11 are lowered from 20 and 22decimaldigit numbers to a 19decimaldigit number: ψ9 ≤ ψ10 ≤ ψ11 ≤ Q11 = 3825 12305 65464 13051 (19 digits) = 149491 · 747451 · 34233211. We conjecture that ψ9 = ψ10 = ψ11 = 3825 12305 65464 13051, and give reasons to support this conjecture. The main idea for finding these Carmichael numbers is that we loop on the largest prime factor q3 and propose necessary conditions on n to be a strong pseudoprime to the first 5 prime bases. Comparisons of effectiveness with Arnault’s, Bleichenbacher’s, Jaeschke’s, and Pinch’s methods for finding (Carmichael) numbers with three prime factors, which are strong pseudoprimes to the first several prime bases, are given. 1.
AN UPPER ESTIMATE FOR THE OVERPSEUDOPRIME COUNTING FUNCTION
, 807
"... Abstract. We show that the number of overpseudoprimes to base 2 not exceeding x is o(x ε), where ε> 0 is arbitrary small for sufficiently large x. 1. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We show that the number of overpseudoprimes to base 2 not exceeding x is o(x ε), where ε> 0 is arbitrary small for sufficiently large x. 1.
J. Aust. Math. Soc. 94 (2013), 268–275 doi:10.1017/S1446788712000547 CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
, 2013
"... We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x 1/5 when x is large enough (depending on m). ..."
Abstract
 Add to MetaCart
We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x 1/5 when x is large enough (depending on m).