Results 1  10
of
138
Bisimulation for Labelled Markov Processes
 Information and Computation
, 1997
"... In this paper we introduce a new class of labelled transition systems  Labelled Markov Processes  and define bisimulation for them. ..."
Abstract

Cited by 139 (23 self)
 Add to MetaCart
In this paper we introduce a new class of labelled transition systems  Labelled Markov Processes  and define bisimulation for them.
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 128 (26 self)
 Add to MetaCart
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.
Approximate symbolic model checking of continuoustime Markov chains (Extended Abstract)
, 1999
"... . This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that t ..."
Abstract

Cited by 124 (21 self)
 Add to MetaCart
. This paper presents a symbolic model checking algorithm for continuoustime Markov chains for an extension of the continuous stochastic logic CSL of Aziz et al [1]. The considered logic contains a timebounded untiloperator and a novel operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steady stateoperator) and a Volterra integral equation system for timebounded until. We propose a symbolic approximate method for solving the integrals using MTDDs (multiterminal decision diagrams), a generalisation of MTBDDs. These new structures are suitable for numerical integration using quadrature formulas based on equallyspaced abscissas, like trapezoidal, Simpson and Romberg integration schemes. 1 Introduction The mechanised verification of a given (usually) finitestate model against a property expressed in some temporal logic is known as model checking. For probabilistic...
Model Checking for a Probabilistic Branching Time Logic with Fairness
 Distributed Computing
, 1998
"... We consider concurrent probabilistic systems, based on probabilistic automata of Segala & Lynch [55], which allow nondeterministic choice between probability distributions. These systems can be decomposed into a collection of "computation trees" which arise by resolving the nondeterministic, but n ..."
Abstract

Cited by 116 (37 self)
 Add to MetaCart
We consider concurrent probabilistic systems, based on probabilistic automata of Segala & Lynch [55], which allow nondeterministic choice between probability distributions. These systems can be decomposed into a collection of "computation trees" which arise by resolving the nondeterministic, but not probabilistic, choices. The presence of nondeterminism means that certain liveness properties cannot be established unless fairness is assumed. We introduce a probabilistic branching time logic PBTL, based on the logic TPCTL of Hansson [30] and the logic PCTL of [55], resp. pCTL of [14]. The formulas of the logic express properties such as "every request is eventually granted with probability at least p". We give three interpretations for PBTL on concurrent probabilistic processes: the first is standard, while in the remaining two interpretations the branching time quantifiers are taken to range over a certain kind of fair computation trees. We then present a model checking algorithm for...
Symbolic model checking for probabilistic processes
 IN PROCEEDINGS OF ICALP '97
, 1997
"... We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a stat ..."
Abstract

Cited by 83 (29 self)
 Add to MetaCart
We introduce a symbolic model checking procedure for Probabilistic Computation Tree Logic PCTL over labelled Markov chains as models. Model checking for probabilistic logics typically involves solving linear equation systems in order to ascertain the probability of a given formula holding in a state. Our algorithm is based on the idea of representing the matrices used in the linear equation systems by MultiTerminal Binary Decision Diagrams (MTBDDs) introduced in Clarke et al [14]. Our procedure, based on the algorithm used by Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to represent Markov chains, and is efficient because it avoids explicit state space construction. A PCTL model checker is being implemented in Verus [9].
Model Checking Probabilistic Pushdown Automata
, 2004
"... We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model check ..."
Abstract

Cited by 62 (27 self)
 Add to MetaCart
We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an errortolerant model checking algorithm for general PCTL and the subclass of stateless pPDA. Finally, we consider the class of properties definable by deterministic B uchi automata, and show that both qualitative and quantitative model checking for pPDA is decidable. 1.
Weak Bisimulation for Fully Probabilistic Processes
, 1999
"... Bisimulations that abstract from internal computation have proven to be useful for verification of compositionally defined transition systems. In the literature of probabilistic extensions of such transition systems, similar bisimulations are rare. In this paper, we introduce weak and branching bisi ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
Bisimulations that abstract from internal computation have proven to be useful for verification of compositionally defined transition systems. In the literature of probabilistic extensions of such transition systems, similar bisimulations are rare. In this paper, we introduce weak and branching bisimulation for fully probabilistic systems, transition systems where nondeterministic branching is replaced by probabilistic branching. In contrast to the nondeterministic case, both relations coincide. We give an algorithm to decide weak (and branching) bisimulation with a time complexity cubic in the number of states of the fully probabilistic system. This meets the worst case complexity for deciding branching bisimulation in the nondeterministic case. In addition, the relation is shown to be a congruence with respect to the operators of PLSCCS , a lazy synchronous probabilistic variant of CCS. We illustrate that due to these properties, weak bisimulation provides all the crucial ingredients...
On probabilistic model checking
, 1996
"... Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three realworld case studies: a probabilistic security protocol, dynamic power management and a biological pathway. 1
Implementation of Symbolic Model Checking for Probabilistic Systems
, 2002
"... In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilist ..."
Abstract

Cited by 50 (18 self)
 Add to MetaCart
In this thesis, we present ecient implementation techniques for probabilistic model checking, a method which can be used to analyse probabilistic systems such as randomised distributed algorithms, faulttolerant processes and communication networks. A probabilistic model checker inputs a probabilistic model and a speci cation, such as \the message will be delivered with probability 1", \the probability of shutdown occurring is at most 0.02" or \the probability of a leader being elected within 5 rounds is at least 0.98", and can automatically verify if the speci cation is true in the model.
Metrics for Labelled Markov Systems
, 2001
"... The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process behaviour has a quantitative aspect there should be a more robust approach to process equivalence. This paper studies a metric between labelled Markov processes. This metric has the property that processes are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on logics for characterizing bisimulation and is related, in spirit, to the Hutchinson metric.