Results 1  10
of
416
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
(Show Context)
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 775 (5 self)
 Add to MetaCart
(Show Context)
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 751 (11 self)
 Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for the efficient approximability of many optimization problems studied previously. In particular, for MaxE2Sat, MaxCut, MaxdiCut, and Vertex cover. Warning: Essentially this paper has been published in JACM and is subject to copyright restrictions. In particular it is for personal use only.
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 395 (2 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in d , the running time increases to O(n(log n) ). For every fixed c, d the running time is n ⅐ poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d ). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as ᐉ p for p Ն 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
A Parallel Repetition Theorem
 SIAM Journal on Computing
, 1998
"... We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the t ..."
Abstract

Cited by 362 (9 self)
 Add to MetaCart
(Show Context)
We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the total number of possible answers of the two provers. The dependency on the total number of possible answers is logarithmic, which was recently proved to be almost the best possible [U. Feige and O. Verbitsky, Proc. 11th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 7076].
Robust Characterizations of Polynomials with Applications to Program Testing
, 1996
"... The study of selftesting and selfcorrecting programs leads to the search for robust characterizations of functions. Here we make this notion precise and show such a characterization for polynomials. From this characterization, we get the following applications. ..."
Abstract

Cited by 361 (38 self)
 Add to MetaCart
The study of selftesting and selfcorrecting programs leads to the search for robust characterizations of functions. Here we make this notion precise and show such a characterization for polynomials. From this characterization, we get the following applications.
A SubConstant ErrorProbability LowDegree Test, and a SubConstant ErrorProbability PCP Characterization of NP
 IN PROC. 29TH ACM SYMP. ON THEORY OF COMPUTING, 475484. EL PASO
, 1997
"... We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, ..."
Abstract

Cited by 324 (20 self)
 Add to MetaCart
We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, much smaller than constant). The new test enables us to prove a lowerror characterization of NP in terms of PCP. Specifically, our theorem states that, for any given ffl ? 0, membership in any NP language can be verified with O(1) accesses, each reading logarithmic number of bits, and such that the errorprobability is 2 \Gamma log 1\Gammaffl n . Our results are in fact stronger, as stated below. One application of the new characterization of NP is that approximating SETCOVER to within a logarithmic factors is NPhard. Previous analysis for lowdegreetests, as well as previous characterizations of NP in terms of PCP, have managed to achieve, with constant number of accesses, error...
When trees collide: An approximation algorithm for the generalized Steiner problem on networks
, 1994
"... We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the a ..."
Abstract

Cited by 248 (38 self)
 Add to MetaCart
We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the available links and satisfying the requirements. Our algorithm outputs a solution whose cost is within 2dlog 2 (r + 1)e of optimal, where r is the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial minmax approximate equality relating minimumcost networks to maximum packings of certain kinds of cuts. As a consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts; we show that this algorithm has application to estimating the reliability of a probabilistic network.
Zero Knowledge and the Chromatic Number
 Journal of Computer and System Sciences
, 1996
"... We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number wi ..."
Abstract

Cited by 196 (6 self)
 Add to MetaCart
(Show Context)
We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number within \Omega\Gamma N ffi ), for some ffi ? 0. We then apply our technique in conjunction with the probabilistically checkable proofs of Hastad, and show that it is hard to approximate the chromatic number to within\Omega\Gamma N 1\Gammaffl ) for any ffl ? 0, assuming NP 6` ZPP. Here, ZPP denotes the class of languages decidable by a random expected polynomialtime algorithm that makes no errors. Our result matches (up to low order terms) the known gap for approximating the size of the largest independent set. Previous O(N ffi ) gaps for approximating the chromatic number (such as those by Lund and Yannakakis, and by Furer) did not match the gap for independent set, and do not extend...