Results 1  10
of
339
Intelligent agents: Theory and practice
 The Knowledge Engineering Review
, 1995
"... The concept of an agent has become important in both Artificial Intelligence (AI) and mainstream computer science. Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and construction of intelligent age ..."
Abstract

Cited by 1431 (86 self)
 Add to MetaCart
(Show Context)
The concept of an agent has become important in both Artificial Intelligence (AI) and mainstream computer science. Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and construction of intelligent agents. For convenience, we divide these issues into three areas (though as the reader will see, the divisions are at times somewhat arbitrary). Agent theory is concerned with the question of what an agent is, and the use of mathematical formalisms for representing and reasoning about the properties of agents. Agent architectures can be thought of as software engineering models of agents; researchers in this area are primarily concerned with the problem of designing software or hardware systems that will satisfy the properties specified by agent theorists. Finally, agent languages are software systems for programming and experimenting with agents; these languages may embody principles proposed by theorists. The paper is not intended to serve as a tutorial introduction to all the issues mentioned; we hope instead simply to identify the most important issues, and point to work that elaborates on them. The article includes a short review of current and potential applications of agent technology.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 759 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
(Show Context)
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
The Spatial Semantic Hierarchy
 Artificial Intelligence
, 2000
"... The Spatial Semantic Hierarchy is a model of knowledge of largescale space consisting of multiple interacting representations, both qualitative and quantitative. The SSH is inspired by the properties of the human cognitive map, and is intended to serve both as a model of the human cognitive map and ..."
Abstract

Cited by 333 (34 self)
 Add to MetaCart
(Show Context)
The Spatial Semantic Hierarchy is a model of knowledge of largescale space consisting of multiple interacting representations, both qualitative and quantitative. The SSH is inspired by the properties of the human cognitive map, and is intended to serve both as a model of the human cognitive map and as a method for robot exploration and mapbuilding. The multiple levels of the SSH express states of partial knowledge, and thus enable the human or robotic agent to deal robustly with uncertainty during both learning and problemsolving. The control level represents useful patterns of sensorimotor interaction with the world in the form of trajectoryfollowing and hillclimbing control laws leading to locally distinctive states. Local geometric maps in local frames of reference can be constructed at the control level to serve as observers for control laws in particular neighborhoods. The causal level abstracts continuous behavior among distinctive states into a discrete model ...
Agent theories, architectures, and languages: a survey
, 1995
"... The concept of an agent has recently become important in Artificial Intelligence (AI), and its relatively youthful subfield, Distributed AI (DAI). Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and ..."
Abstract

Cited by 317 (2 self)
 Add to MetaCart
(Show Context)
The concept of an agent has recently become important in Artificial Intelligence (AI), and its relatively youthful subfield, Distributed AI (DAI). Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and construction of intelligent agents. For convenience, we divide the area into three themes (though as the reader will see, these divisions are at times somewhat arbitrary). Agent theory is concerned with the question of what an agent is, and the use of mathematical formalisms for representing and reasoning about the properties of agents. Agent architectures can be thought of as software engineering models of agents; researchers in this area are primarily concerned with the problem of constructing software or hardware systems that will satisfy the properties specified by agent theorists. Finally, agent languages are software systems for programming and experimenting with agents; these languages typically embody principles proposed by theorists. The paper is not intended to serve as a tutorial introduction to all the issues mentioned; we hope instead simply to identify the key issues, and point to work that elaborates on them. The paper closes with a detailed bibliography, and some bibliographical remarks. 1
An Algorithm for Probabilistic Planning
, 1995
"... We define the probabilistic planning problem in terms of a probability distribution over initial world states, a boolean combination of propositions representing the goal, a probability threshold, and actions whose effects depend on the executiontime state of the world and on random chance. Adoptin ..."
Abstract

Cited by 285 (19 self)
 Add to MetaCart
We define the probabilistic planning problem in terms of a probability distribution over initial world states, a boolean combination of propositions representing the goal, a probability threshold, and actions whose effects depend on the executiontime state of the world and on random chance. Adopting a probabilistic model complicates the definition of plan success: instead of demanding a plan that provably achieves the goal, we seek plans whose probability of success exceeds the threshold. In this paper, we present buridan, an implemented leastcommitment planner that solves problems of this form. We prove that the algorithm is both sound and complete. We then explore buridan's efficiency by contrasting four algorithms for plan evaluation, using a combination of analytic methods and empirical experiments. We also describe the interplay between generating plans and evaluating them, and discuss the role of search control in probabilistic planning. 3 We gratefully acknowledge the comment...
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 277 (13 self)
 Add to MetaCart
(Show Context)
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Exploiting structure in policy construction
 IJCAI95, pp.1104–1111
, 1995
"... Markov decision processes (MDPs) have recently been applied to the problem of modeling decisiontheoretic planning. While traditional methods for solving MDPs are often practical for small states spaces, their effectiveness for large AI planning problems is questionable. We present an algorithm, call ..."
Abstract

Cited by 253 (24 self)
 Add to MetaCart
(Show Context)
Markov decision processes (MDPs) have recently been applied to the problem of modeling decisiontheoretic planning. While traditional methods for solving MDPs are often practical for small states spaces, their effectiveness for large AI planning problems is questionable. We present an algorithm, called structured policy iteration (SPI), that constructs optimal policies without explicit enumeration of the state space. The algorithm retains the fundamental computational steps of the commonly used modified policy iteration algorithm, but exploitsthe variable and propositionalindependencies reflected in a temporal Bayesian network representation of MDPs. The principles behind SPI can be applied to any structured representation of stochastic actions, policies and value functions, and the algorithm itself can be used in conjunction with recent approximation methods. 1
Teleoreactive programs for agent control
 Journal of Artificial Intelligence Research
, 1994
"... A formalism is presented for computing and organizing actions for autonomous agents in dynamic environments. We introduce the notion of teleoreactive (TR) programs whose execution entails the construction of circuitry for the continuous computation of the parameters and conditions on which agent a ..."
Abstract

Cited by 228 (1 self)
 Add to MetaCart
(Show Context)
A formalism is presented for computing and organizing actions for autonomous agents in dynamic environments. We introduce the notion of teleoreactive (TR) programs whose execution entails the construction of circuitry for the continuous computation of the parameters and conditions on which agent action is based. In addition to continuous feedback, TR programs support parameter binding and recursion. A primary di erence between TR programs and many other circuitbased systems is that the circuitry of TR programs is more compact; it is constructed at run time and thus does not have toanticipate all the contingencies that might arise over all possible runs. In addition, TR programs are intuitive and easy to write and are written in a form that is compatible with automatic planning and learning methods. We brie y describe some experimental applications of TR programs in the control of simulated and actual mobile robots. 1.