Results 1  10
of
53
Generalized Additive Models
, 1990
"... Liklihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj)a ..."
Abstract

Cited by 1314 (33 self)
 Add to MetaCart
Liklihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj)a The Sj(.) ‘s are unspecified functions that are estimated using scatterplot smoothers. The technique is applicable to any likelihoodbased regression model: the class of Generalized Linear Models contains many of these. In this class, the Locul Scoring procedure replaces the linear predictor VI = C Xj@j by the additive predictor C ai ( hence, the name Generalized Additive Modeb. Local Scoring can also be applied to nonstandard models like Cox’s proportional hazards model for survival data. In a number of real data examples, the Local Scoring procedure proves to be useful in uncovering nonlinear covariate effects. It has the advantage of being completely automatic, i.e. no “detective work ” is needed on the part of the statistician. In a further generalization, the technique is modified to estimate the form of the link function for generalized linear models. The Local Scoring procedure is shown to be asymptotically equivalent to Local Likelihood estimation, another technique for estimating smooth covariate functions. They are seen to produce very similar results with real data, with Local Scoring being considerably faster. As a theoretical underpinning, we view Local Scoring and Local Likelihood as empirical maximizers of the ezpected loglikelihood, and this makes clear their connection to standard maximum likelihood estimation. A method for estimating the “degrees of freedom ” of the procedures is also given.
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and t ..."
Abstract

Cited by 1217 (21 self)
 Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most...
Penalized Discriminant Analysis
 Annals of Statistics
, 1995
"... Fisher's linear discriminant analysis (LDA) is a popular dataanalytic tool for studying the relationship between a set of predictors and a categorical response. In this paper we describe a penalized version of LDA. It is designed for situations in which there are many highly correlated predictors, ..."
Abstract

Cited by 131 (9 self)
 Add to MetaCart
Fisher's linear discriminant analysis (LDA) is a popular dataanalytic tool for studying the relationship between a set of predictors and a categorical response. In this paper we describe a penalized version of LDA. It is designed for situations in which there are many highly correlated predictors, such as those obtained by discretizing a function, or the greyscale values of the pixels in a series of images. In cases such as these it is natural, efficient, and sometimes essential to impose a spatial smoothness constraint on the coefficients, both for improved prediction performance and interpretability. We cast the classification problem into a regression framework via optimal scoring. Using this, our proposal facilitates the use of any penalized regression technique in the classification setting. The technique is illustrated with examples in speech recognition and handwritten character recognition. AMS 1991 Classifications: Primary 62H30, Secondary 62G07 1 Introduction Linear discrim...
Flexible Discriminant Analysis by Optimal Scoring
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1993
"... Fisher's linear discriminant analysis is a valuable tool for multigroup classification. With a large number of predictors, one can nd a reduced number of discriminant coordinate functions that are "optimal" for separating the groups. With two such functions one can produce a classification map that ..."
Abstract

Cited by 112 (12 self)
 Add to MetaCart
Fisher's linear discriminant analysis is a valuable tool for multigroup classification. With a large number of predictors, one can nd a reduced number of discriminant coordinate functions that are "optimal" for separating the groups. With two such functions one can produce a classification map that partitions the reduced space into regions that are identified with group membership, and the decision boundaries are linear. This paper is about richer nonlinear classification schemes. Linear discriminant analysis is equivalent to multiresponse linear regression using optimal scorings to represent the groups. We obtain nonparametric versions of discriminant analysis by replacing linear regression by any nonparametric regression method. In this way, any multiresponse regression technique (such as MARS or neural networks) can be postprocessed to improve their classification performence.
Local Regression: Automatic Kernel Carpentry
 Statistical Science
, 1993
"... . A kernel smoother is an intuitive estimate of a regression function or conditional expectation; at each point x 0 the estimate of E(Y j x 0 ) is a weighted mean of the sample Y i , with observations close to x 0 receiving the largest weights. Unfortunately this simplicity has flaws. At the boundar ..."
Abstract

Cited by 107 (2 self)
 Add to MetaCart
. A kernel smoother is an intuitive estimate of a regression function or conditional expectation; at each point x 0 the estimate of E(Y j x 0 ) is a weighted mean of the sample Y i , with observations close to x 0 receiving the largest weights. Unfortunately this simplicity has flaws. At the boundary of the predictor space, the kernel neighborhood is asymmetric and the estimate may have substantial bias. Bias can be a problem in the interior as well if the predictors are nonuniform or if the regression function has substantial curvature. These problems are particularly severe when the predictors are multidimensional. A variety of kernel modifications have been proposed to provide approximate and asymptotic adjustment for these biases. Such methods generally place substantial restrictions on the regression problems that can be considered; in unfavorable situations, they can perform very poorly. Moreover, the necessary modifications are very difficult to implement in the multidimensional...
Piecewisepolynomial regression trees
 Statistica Sinica
, 1994
"... A nonparametric function 1 estimation method called SUPPORT (“Smoothed and Unsmoothed PiecewisePolynomial Regression Trees”) is described. The estimate is typically made up of several pieces, each piece being obtained by fitting a polynomial regression to the observations in a subregion of the data ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
A nonparametric function 1 estimation method called SUPPORT (“Smoothed and Unsmoothed PiecewisePolynomial Regression Trees”) is described. The estimate is typically made up of several pieces, each piece being obtained by fitting a polynomial regression to the observations in a subregion of the data space. Partitioning is carried out recursively as in a treestructured method. If the estimate is required to be smooth, the polynomial pieces may be glued together by means of weighted averaging. The smoothed estimate is thus obtained in three steps. In the first step, the regressor space is recursively partitioned until the data in each piece are adequately fitted by a polynomial of a fixed order. Partitioning is guided by analysis of the distributions of residuals and crossvalidation estimates of prediction mean square error. In the second step, the data within a neighborhood of each partition are fitted by a polynomial. The final estimate of the regression function is obtained by averaging the polynomial pieces, using smooth weight functions each of which diminishes rapidly to zero outside its associated partition. Estimates of derivatives of the regression function may be
Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models
 COSSO. INSTITUTE OF STATISTICS MIMEO SERIES 2556, NCSU
, 2003
"... We propose a new method for model selection and model fitting in nonparametric regression models, in the framework of smoothing spline ANOVA. The "COSSO" is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditi ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
We propose a new method for model selection and model fitting in nonparametric regression models, in the framework of smoothing spline ANOVA. The "COSSO" is a method of regularization with the penalty functional being the sum of component norms, instead of the squared norm employed in the traditional smoothing spline method. The COSSO provides a unified framework for several recent proposals for model selection in linear models and smoothing spline ANOVA models. Theoretical properties, such as the existence and the rate of convergence of the COSSO estimator, are studied. In the special case of a tensor product design with periodic functions, a detailed analysis reveals that the COSSO applies a novel soft thresholding type operation to the function components and selects the correct model structure with probability tending to one. We give
REACT Scatterplot Smoothers: Superefficiency through Basis Economy
 J. AMER. STATIST. ASSOC
, 1999
"... ..."
Uncertain Reasoning and Forecasting
 International Journal of Forecasting
, 1995
"... We develop a probability forecasting model through a synthesis of Bayesian beliefnetwork models and classical timeseries analysis. By casting Bayesian timeseries analyses as temporal beliefnetwork problems, weintroduce dependency models that capture richer and more realistic models of dynamic ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
We develop a probability forecasting model through a synthesis of Bayesian beliefnetwork models and classical timeseries analysis. By casting Bayesian timeseries analyses as temporal beliefnetwork problems, weintroduce dependency models that capture richer and more realistic models of dynamic dependencies. With richer models and associated computational methods, we can movebeyond the rigid classical assumptions of linearityin the relationships among variables and of normality of their probability distributions.
Semilinear highdimensional model for normalization of microarray data: a theoretical analysis and partial consistency
 J. Amer. Statist. Assoc
, 2005
"... Normalization of microarray data is essential for removing experimental biases and revealing meaningful biological results. Motivated by a problem of normalizing microarray data, a semilinear inslide model (SLIM) has been proposed. To aggregate information from other arrays, SLIM is generalized to ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
Normalization of microarray data is essential for removing experimental biases and revealing meaningful biological results. Motivated by a problem of normalizing microarray data, a semilinear inslide model (SLIM) has been proposed. To aggregate information from other arrays, SLIM is generalized to account for acrossarray information, resulting in an even more dynamic semiparametric regression model. This model can be used to normalize microarray data even when there is no replication within an array. We demonstrate that this semiparametric model has a number of interesting features. The parametric component and the nonparametric component that are of primary interest can be consistently estimated, the former having a parametric rate and the latter having a nonparametric rate, whereas the nuisance parameters cannot be consistently estimated. This is an interesting extension of the partial consistent phenomena, which itself is of theoretical interest. The asymptotic normality for the parametric component and the rate of convergence for the nonparametric component are established. The results are augmented by simulation studies and illustrated by an application to the cDNA microarray analysis of neuroblastoma cells in response to the macrophage migration inhibitory factor.