Results 1  10
of
75
A Syntactic Approach to Type Soundness
 INFORMATION AND COMPUTATION
, 1992
"... We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the la ..."
Abstract

Cited by 635 (25 self)
 Add to MetaCart
(Show Context)
We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the language semantics. The approach easily extends from polymorphic functional languages to imperative languages that provide references, exceptions, continuations, and similar features. We illustrate the technique with a type soundness theorem for the core of Standard ML, which includes the first type soundness proof for polymorphic exceptions and continuations.
Compiling polymorphism using intensional type analysis
 In Symposium on Principles of Programming Languages
, 1995
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as ..."
Abstract

Cited by 264 (19 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as
Reflections on Standard ML
 FUNCTIONAL PROGRAMMING, CONCURRENCY, SIMULATION AND AUTOMATED REASONING, VOLUME 693 OF LNCS
, 1992
"... Standard ML is one of a number of new programming languages developed in the 1980s that are seen as suitable vehicles for serious systems and applications programming. It offers an excellent ratio of expressiveness to language complexity, and provides competitive efficiency. Because of its type an ..."
Abstract

Cited by 211 (4 self)
 Add to MetaCart
Standard ML is one of a number of new programming languages developed in the 1980s that are seen as suitable vehicles for serious systems and applications programming. It offers an excellent ratio of expressiveness to language complexity, and provides competitive efficiency. Because of its type and module system, Standard ML manages to combine safety, security, and robustness with much of the flexibility of dynamically typed languages like Lisp. It is also has the most welldeveloped scientific foundation of any major language. Here I review the strengths and weaknesses of Standard ML and describe some of what we have learned through the design, implementation, and use of the language.
The Type and Effect Discipline
 Information and Computation
, 1992
"... The type and effect discipline is a new framework for reconstructing the principal type and the minimal effect of expressions in implicitly typed polymorphic functional languages that support imperative constructs. The type and effect discipline outperforms other polymorphic type systems. Just as ty ..."
Abstract

Cited by 175 (3 self)
 Add to MetaCart
(Show Context)
The type and effect discipline is a new framework for reconstructing the principal type and the minimal effect of expressions in implicitly typed polymorphic functional languages that support imperative constructs. The type and effect discipline outperforms other polymorphic type systems. Just as types abstract collections of concrete values, effects denote imperative operations on regions. Regions abstract sets of possibly aliased memory locations. Effects are used to control type generalization in the presence of imperative constructs while regions delimit observable sideeffects. The observable effects of an expression range over the regions that are free in its type environment and its type; effects related to local data structures can be discarded during type reconstruction. The type of an expression can be generalized with respect to the variables that are not free in the type environment or in the observable effect. 1 Introduction Type inference [12] is the process that automa...
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 146 (3 self)
 Add to MetaCart
(Show Context)
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
HigherOrder Modules and the Phase Distinction
 In Seventeenth ACM Symposium on Principles of Programming Languages
, 1990
"... Typed λcalculus is an important tool in programming language research because it provides an extensible framework for studying language features both in isolation and in their relation to each other. In earlier work we introduced a predicative function calculus, XML, for modeling several ..."
Abstract

Cited by 136 (25 self)
 Add to MetaCart
Typed &lambda;calculus is an important tool in programming language research because it provides an extensible framework for studying language features both in isolation and in their relation to each other. In earlier work we introduced a predicative function calculus, XML, for modeling several aspects of the Standard ML type system. Following MacQueen, our study focused on the use of dependent types to represent the modularity constructs of Standard ML. In addition to shedding some light on the tradeoffs between language features, our analysis suggested that the firstorder modules system of ML could be naturally extended to higher orders. However, whereas ML maintains a clear distinction between compiletime and runtime in both its implementation and formal semantics, the XML calculus blurs this distinction. Since static type checking is, in our view, essential to the practical utility of ML, we introduce a refinement of the XML calculus for which type checking is decidable at compile time....
Polymorphic Type, Region and Effect Inference
, 1991
"... We present a new static system that reconstructs the types, regions and effects of expressions in an implicitly typed functional language that supports imperative operations on reference values. Just as types structurally abstract collections of concrete values, regions represent sets of possibly a ..."
Abstract

Cited by 134 (6 self)
 Add to MetaCart
(Show Context)
We present a new static system that reconstructs the types, regions and effects of expressions in an implicitly typed functional language that supports imperative operations on reference values. Just as types structurally abstract collections of concrete values, regions represent sets of possibly aliased reference values and effects represent approximations of the imperative behavior on regions. We introduce a static semantics for inferring types, regions and effects and prove that it is consistent with respect to the dynamic semantics of the language. We present a reconstruction algorithm that computes the types and effects of expressions and assigns regions to reference values. We prove the correctness of the reconstruction algorithm with respect to the static semantics. Finally, we discuss potential applications of our system to automatic stack allocation and parallel code generation.
What is a Recursive Module?
 In SIGPLAN Conference on Programming Language Design and Implementation
, 1999
"... A hierarchical module system is an effective tool for structuring large programs. Strictly hierarchical module systems impose an acyclic ordering on import dependencies among program units. This can impede modular programming by forcing mutuallydependent components to be consolidated into a single ..."
Abstract

Cited by 88 (4 self)
 Add to MetaCart
A hierarchical module system is an effective tool for structuring large programs. Strictly hierarchical module systems impose an acyclic ordering on import dependencies among program units. This can impede modular programming by forcing mutuallydependent components to be consolidated into a single module. Recently there have been several proposals for module systems that admit cyclic dependencies, but it is not clear how these proposals relate to one another, nor how one might integrate them into an expressive module system such as that of ML. To address this question we provide a typetheoretic analysis of the notion of a recursive module in the context of a "phasedistinction" formalism for higherorder module systems. We extend this calculus with a recursive module mechanism and a new form of signature, called a recursively dependent signature, to support the defmition of recursive modules. These extensions are justified by an interpretation in terms of more primitive language constructs. This interpretation may also serve as a guide for implementation.
Using Parameterized Signatures to Express Modular Structure
 POPL'96
, 1996
"... Module systems are a powerful, practical tool for managing the complexity of large software systems. Previous attempts to formulate a typetheoretic foundation for modular programming have been based on existential, dependent, or manifest types. These approaches can be distinguished by their use of ..."
Abstract

Cited by 67 (1 self)
 Add to MetaCart
(Show Context)
Module systems are a powerful, practical tool for managing the complexity of large software systems. Previous attempts to formulate a typetheoretic foundation for modular programming have been based on existential, dependent, or manifest types. These approaches can be distinguished by their use of different quantifiers to package the operations that a module exports together with appropriate implementation types. In each case, the underlying type theory is simple and elegant, but significant and sometimes complex extensions are needed to account for features that are im portant in practical systems, such as separate compilation and propagation of type information between modules. This paper presents a simple typetheoretic fi'amework for modular programming using parameterized signatmes. The use of quantifiers is treated as a necessary, but independent concern. Using familiar concepts of polymorphism, the resulting module system is easy to understaud and admits true separate compilation. It is also very powerful, supporting highorder, polymorphic, and firstclass modules without further extension.
Polymorphic Type Inference and Abstract Data Types
 ACM Transactions on Programming Languages and Systems
, 1994
"... Data Types Konstantin Läufer Martin Odersky Loyola University of Chicago Universität Karlsruhe laufer@math.luc.edu odersky@ira.uka.de June 5, 1994 Technical Report LUC001 Abridged version appeared in Transactions of Programming Languages and Systems Abstract Many staticallytyped programming lan ..."
Abstract

Cited by 66 (3 self)
 Add to MetaCart
Data Types Konstantin Läufer Martin Odersky Loyola University of Chicago Universität Karlsruhe laufer@math.luc.edu odersky@ira.uka.de June 5, 1994 Technical Report LUC001 Abridged version appeared in Transactions of Programming Languages and Systems Abstract Many staticallytyped programming languages provide an abstract data type construct, such as the module in Modula2. However, in most of these languages, implementations of abstract data types are not firstclass values. Thus they cannot be assigned to variables, passed as function parameters, or returned as function results. Several higherorder functional languages feature strong and static type systems, parametric polymorphism, algebraic data types, and explicit type variables. Most of them rely on Hindley Milner type inference instead of requiring explicit type declarations for identifiers. Although some of these languages support abstract data types, it appears that none of them directly provides lightweight abstract dat...