Results 1  10
of
548
Data Clustering: A Review
 ACM COMPUTING SURVEYS
, 1999
"... Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exp ..."
Abstract

Cited by 1284 (13 self)
 Add to MetaCart
Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify crosscutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.
Quantization
 IEEE TRANS. INFORM. THEORY
, 1998
"... The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modula ..."
Abstract

Cited by 639 (11 self)
 Add to MetaCart
The history of the theory and practice of quantization dates to 1948, although similar ideas had appeared in the literature as long ago as 1898. The fundamental role of quantization in modulation and analogtodigital conversion was first recognized during the early development of pulsecode modulation systems, especially in the 1948 paper of Oliver, Pierce, and Shannon. Also in 1948, Bennett published the first highresolution analysis of quantization and an exact analysis of quantization noise for Gaussian processes, and Shannon published the beginnings of rate distortion theory, which would provide a theory for quantization as analogtodigital conversion and as data compression. Beginning with these three papers of fifty years ago, we trace the history of quantization from its origins through this decade, and we survey the fundamentals of the theory and many of the popular and promising techniques for quantization.
Efficient Clustering of HighDimensional Data Sets with Application to Reference Matching
, 2000
"... Many important problems involve clustering large datasets. Although naive implementations of clustering are computationally expensive, there are established efficient techniques for clustering when the dataset has either (1) a limited number of clusters, (2) a low feature dimensionality, or (3) a sm ..."
Abstract

Cited by 256 (12 self)
 Add to MetaCart
Many important problems involve clustering large datasets. Although naive implementations of clustering are computationally expensive, there are established efficient techniques for clustering when the dataset has either (1) a limited number of clusters, (2) a low feature dimensionality, or (3) a small number of data points. However, there has been much less work on methods of efficiently clustering datasets that are large in all three ways at once, for example, having millions of data points that exist in many thousands of dimensions representing many thousands of clusters. We present a new technique for clustering these large, highdimensional datasets. The key idea involves using a cheap, approximate distance measure to efficiently divide the data into overlapping subsets we call canopies. Then clustering is performed by measuring exact distances only between points that occur in a common canopy. Using canopies, large clustering problems that were formerly impossible become practical. Under reasonable assumptions about the cheap distance metric, this reduction in computational cost comes without any loss in clustering accuracy. Canopies can be applied to many domains and used with a variety of clustering approaches, including Greedy Agglomerative Clustering, Kmeans and ExpectationMaximization. We present experimental results on grouping bibliographic citations from the reference sections of research papers. Here the canopy approach reduces computation time over a traditional clustering approach by more than an order of magnitude and decreases error in comparison to a previously used algorithm by 25%.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 231 (3 self)
 Add to MetaCart
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
The adaptive nature of human categorization
 Psychological Review
, 1991
"... A rational model of human categorization behavior is presented that assumes that categorization reflects the derivation of optimal estimates of the probability of unseen features of objects. A Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint partiti ..."
Abstract

Cited by 211 (2 self)
 Add to MetaCart
A rational model of human categorization behavior is presented that assumes that categorization reflects the derivation of optimal estimates of the probability of unseen features of objects. A Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint partitioning of the object space and if features were independently displayed within a category. This Bayesian analysis is placed within an incremental categorization algorithm. The resulting rational model accounts for effects of central tendency of categories, effects of specific instances, learning of linearly nonseparable categories, effects of category labels, extraction of basic level categories, baserate effects, probability matching in categorization, and trialbytrial learning functions. Although the rational model considers just I level of categorization, it is shown how predictions can be enhanced by considering higher and lower levels. Considering prediction at the lower, individual level allows integration of this rational analysis of categorization with the earlier rational analysis of memory (Anderson & Milson, 1989). Anderson (1990) presented a rational analysis ot 6 human cognition. The term rational derives from similar "rationalman" analyses in economics. Rational analyses in other fields are sometimes called adaptationist analyses. Basically, they are efforts to explain the behavior in some domain on the assumption that the behavior is optimized with respect to some criteria of adaptive importance. This article begins with a general characterization ofhow one develops a rational theory of a particular cognitive phenomenon. Then I present the basic theory of categorization developed in Anderson (1990) and review the applications from that book. Since the writing of the book, the theory has been greatly extended and applied to many new phenomena. Most of this article describes these new developments and applications. A Rational Analysis Several theorists have promoted the idea that psychologists might understand human behavior by assuming it is adapted to the environment (e.g., Brunswik, 1956; Campbell, 1974; Gib
Variable Neighborhood Search
, 1997
"... Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications a ..."
Abstract

Cited by 201 (17 self)
 Add to MetaCart
Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications are briefly summarized. They comprise heuristic solution of a variety of optimization problems, ways to accelerate exact algorithms and to analyze heuristic solution processes, as well as computerassisted discovery of conjectures in graph theory.
Extensions to the kMeans Algorithm for Clustering Large Data Sets with Categorical Values
, 1998
"... The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categoric ..."
Abstract

Cited by 156 (2 self)
 Add to MetaCart
The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categorical domains and domains with mixed numeric and categorical values. The kmodes algorithm uses a simple matching dissimilarity measure to deal with categorical objects, replaces the means of clusters with modes, and uses a frequencybased method to update modes in the clustering process to minimise the clustering cost function. With these extensions the kmodes algorithm enables the clustering of categorical data in a fashion similar to kmeans. The kprototypes algorithm, through the definition of a combined dissimilarity measure, further integrates the kmeans and kmodes algorithms to allow for clustering objects described by mixed numeric and categorical attributes. We use the well known soybean disease and credit approval data sets to demonstrate the clustering performance of the two algorithms. Our experiments on two real world data sets with half a million objects each show that the two algorithms are efficient when clustering large data sets, which is critical to data mining applications.
Clustering with instancelevel constraints
 In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract

Cited by 150 (6 self)
 Add to MetaCart
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problemspecific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domainspecific information in the form of constraints on the output clusters. At the most general level, each constraint is an instancelevel statement
Document Clustering using Word Clusters via the Information Bottleneck Method
 In ACM SIGIR 2000
, 2000
"... We present a novel implementation of the recently introduced information bottleneck method for unsupervised document clustering. Given a joint empirical distribution of words and documents, p(x; y), we first cluster the words, Y , so that the obtained word clusters, Y_hat , maximally preserve the in ..."
Abstract

Cited by 150 (18 self)
 Add to MetaCart
We present a novel implementation of the recently introduced information bottleneck method for unsupervised document clustering. Given a joint empirical distribution of words and documents, p(x; y), we first cluster the words, Y , so that the obtained word clusters, Y_hat , maximally preserve the information on the documents. The resulting joint distribution, p(X; Y_hat ), contains most of the original information about the documents, I(X; Y_hat ) ~= I(X;Y ), but it is much less sparse and noisy. Using the same procedure we then cluster the documents, X , so that the information about the wordclusters is preserved. Thus, we first find wordclusters that capture most of the mutual information about the set of documents, and then find document clusters, that preserve the information about the word clusters. We tested this procedure over several document collections based on subsets taken from the standard 20Newsgroups corpus. The results were assessed by calculating the correlation between the document clusters and the correct labels for these documents. Finding from our experiments show that this double clustering procedure, which uses the information bottleneck method, yields significantly superior performance compared to other common document distributional clustering algorithms. Moreover, the double clustering procedure improves all the distributional clustering methods examined here.