Results 1  10
of
19
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 234 (48 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Higherorder logic programming
 HANDBOOK OF LOGIC IN AI AND LOGIC PROGRAMMING, VOLUME 5: LOGIC PROGRAMMING. OXFORD (1998
"... ..."
Forum: A multipleconclusion specification logic
 Theoretical Computer Science
, 1996
"... The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higherorder program ..."
Abstract

Cited by 96 (12 self)
 Add to MetaCart
(Show Context)
The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higherorder programming) but lack primitives for concurrency. The logic programming language, LO (Linear Objects) [2] provides some primitives for concurrency but lacks abstraction mechanisms. In this paper we present Forum, a logic programming presentation of all of linear logic that modularly extends λProlog, Lolli, and LO. Forum, therefore, allows specifications to incorporate both abstractions and concurrency. To illustrate the new expressive strengths of Forum, we specify in it a sequent calculus proof system and the operational semantics of a programming language that incorporates references and concurrency. We also show that the meta theory of linear logic can be used to prove properties of the objectlanguages specified in Forum.
A MultipleConclusion MetaLogic
 In Proceedings of 9th Annual IEEE Symposium On Logic In Computer Science
, 1994
"... The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [12], provide data types, higherorder programming) but lack primitives for concurrency. The logic pro ..."
Abstract

Cited by 87 (7 self)
 Add to MetaCart
(Show Context)
The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [12], provide data types, higherorder programming) but lack primitives for concurrency. The logic programming language, LO (Linear Objects) [2] provides for concurrency but lacks abstraction mechanisms. In this paper we present Forum, a logic programming presentation of all of linear logic that modularly extends the languages λProlog, Lolli, and LO. Forum, therefore, allows specifications to incorporate both abstractions and concurrency. As a metalanguage, Forum greatly extends the expressiveness of these other logic programming languages. To illustrate its expressive strength, we specify in Forum a sequent calculus proof system and the operational semantics of a functional programming language that incorporates such nonfunctional features as counters and references. 1
Cutelimination for a logic with definitions and induction
 Theoretical Computer Science
, 1997
"... In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The l ..."
Abstract

Cited by 72 (22 self)
 Add to MetaCart
(Show Context)
In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The literature contains many approaches to formally adding these reasoning principles with logic specifications. We choose an approach based on the sequent calculus and design an intuitionistic logic F Oλ ∆IN that includes natural number induction and a notion of definition. We have detailed elsewhere that this logic has a number of applications. In this paper we prove the cutelimination theorem for F Oλ ∆IN, adapting a technique due to Tait and MartinLöf. This cutelimination proof is technically interesting and significantly extends previous results of this kind. 1
Encoding Transition Systems in Sequent Calculus
 Theoretical Computer Science
, 1996
"... Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. I ..."
Abstract

Cited by 38 (11 self)
 Add to MetaCart
Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. In both cases, it is possible to relate transition paths to proofs in sequent calculus. In neither encoding, however, does it seem possible to capture properties, such as simulation and bisimulation, that need to consider all possible transitions or all possible computation paths. We consider augmenting both intuitionistic and linear logics with a proof theoretical treatment of definitions. In both cases, this addition allows proving various judgments concerning simulation and bisimulation (especially for noetherian transition systems). We also explore the use of infinite proofs to reason about infinite sequences of transitions. Finally, combining definitions and induction into sequent calculus proofs makes it possible to reason more richly about properties of transition systems completely within the formal setting of sequent calculus.
Encoding Natural Semantics in Coq
 In Proc. AMAST, LNCS 936
, 1995
"... . We address here the problem of automatically translating the Natural Semantics of programming languages to Coq, in order to prove formally general properties of languages. Natural Semantics [18] is a formalism for specifying semantics of programming languages inspired by Plotkin's Structural ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
(Show Context)
. We address here the problem of automatically translating the Natural Semantics of programming languages to Coq, in order to prove formally general properties of languages. Natural Semantics [18] is a formalism for specifying semantics of programming languages inspired by Plotkin's Structural Operational Semantics [22]. The Coq proof development system [12], based on the Calculus of Constructions extended with inductive types (CCind), provides mechanized support including tactics for building goaldirected proofs. Our representation of a language in Coq is inAEuenced by the encoding of logics used by Church [6] and in the Edinburgh Logical Framework (ELF) [15, 3]. 1 Introduction The motivation for our work is the need for an environment to help develop proofs in Natural Semantics. The interactive programming environment generator Centaur [17] allows us to compile a Natural Semantics speciøcation of a given language into executable code (typecheckers, evaluators, compilers, program t...
Mechanically verifying the correctness of an offline partial evaluator (extended version
, 1995
"... Abstract. We show that using deductive systems to specify an offline partial evaluator allows one to specify, prototype, and mechanically verify correctness via metaprogramming — all within a single framework. For a λmixstyle partial evaluator, we specify bindingtime constraints using a natural ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract. We show that using deductive systems to specify an offline partial evaluator allows one to specify, prototype, and mechanically verify correctness via metaprogramming — all within a single framework. For a λmixstyle partial evaluator, we specify bindingtime constraints using a naturaldeduction logic, and the associated program specializer using natural (aka “deductive”) semantics. These deductive systems can be directly encoded in the Elf programming language — a logic programming language based on the LF logical framework. The specifications are then executable as logic programs. This provides a prototype implementation of the partial evaluator. Moreover, since deductive system proofs are accessible as objects in Elf, many aspects of the partial evaluator correctness proofs (e.g., the correctness of bindingtime analysis) can be coded in Elf and mechanically checked. 1
The Definition of Extended ML
, 1994
"... This document formally defines the syntax and semantics of the Extended ML language. It is based directly on the published semantics of Standard ML in an attempt to ensure compatibility between the two languages. LFCS, Department of Computer Science, University of Edinburgh, Edinburgh, Scotland. ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
This document formally defines the syntax and semantics of the Extended ML language. It is based directly on the published semantics of Standard ML in an attempt to ensure compatibility between the two languages. LFCS, Department of Computer Science, University of Edinburgh, Edinburgh, Scotland. y Institute of Informatics, Warsaw University, and Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland. ii CONTENTS Contents 1 Introduction 1 1.1 Behavioural equivalence : : : : : : : : : : : : : : : : : : : : : : : : 3 1.2 Metalanguage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 Syntax of the Core 8 2.1 Reserved Words : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.2 Special constants : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 Comments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.4 Identifiers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.5 Lexical analysis : : : :...