Results 1  10
of
70
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 596 (69 self)
 Add to MetaCart
We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamical laws. For verification purposes, we restrict ourselves to linear hybrid systems, where all variables follow piecewiselinear trajectories. We provide decidability and undecidability results for classes of linear hybrid systems, and we show that standard programanalysis techniques can be adapted to linear hybrid systems. In particular, we consider symbolic modelchecking and minimization procedures that are based on the reachability analysis of an infinite state space. The procedures iteratively compute state sets that are definable as unions of convex polyhedra in multidimensional real space. We also present approximation techniques for dealing with systems for which the iterative procedures do not converge.
The Theory of Hybrid Automata
, 1996
"... A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied on pur ..."
Abstract

Cited by 483 (9 self)
 Add to MetaCart
A hybrid automaton is a formal model for a mixed discretecontinuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discretecontinuous state spaces that was previously studied on purely discrete state spaces only. In particular, various classes of hybrid automata induce finitary trace equivalence (or similarity, or bisimilarity) relations on an uncountable state space, thus permitting the application of various modelchecking techniques that were originally developed for finitestate systems.
HyTech: A Model Checker for Hybrid Systems
 Software Tools for Technology Transfer
, 1997
"... A hybrid system is a dynamical system whose behavior exhibits both discrete and continuous change. A hybrid automaton is a mathematical model for hybrid systems, which combines, in a single formalism, automaton transitions for capturing discrete change with differential equations for capturing conti ..."
Abstract

Cited by 356 (6 self)
 Add to MetaCart
A hybrid system is a dynamical system whose behavior exhibits both discrete and continuous change. A hybrid automaton is a mathematical model for hybrid systems, which combines, in a single formalism, automaton transitions for capturing discrete change with differential equations for capturing continuous change. HyTech is a symbolic model checker for linear hybrid automata, a subclass of hybrid automata that can be analyzed automatically by computing with polyhedral state sets. A key feature of HyTech is its ability to perform parametric analysis, i.e. to determine the values of design parameters for which a linear hybrid automaton satisfies a temporallogic requirement. 1 Introduction A hybrid system typically consists of a collection of digital programs that interact with each other and with an analog environment. Examples of hybrid systems include manufacturing controllers, automotive and flight controllers, medical equipment, microelectromechanical systems, and robots. When thes...
Automatic Symbolic Verification of Embedded Systems
, 1996
"... We present a modelchecking procedure and its implementation for the automatic verification of embedded systems. The system components are described as Hybrid Automata  communicating machines with finite control and realvalued variables that represent continuous environment parameters such as tim ..."
Abstract

Cited by 264 (24 self)
 Add to MetaCart
We present a modelchecking procedure and its implementation for the automatic verification of embedded systems. The system components are described as Hybrid Automata  communicating machines with finite control and realvalued variables that represent continuous environment parameters such as time, pressure, and temperature. The system requirements are specified in a temporal logic with stop watches, and verified by symbolic fixpoint computation. The verification procedure  implemented in the Cornell Hybrid Technology Tool, HyTech  applies to hybrid automata whose continuous dynamics is governed by linear constraints on the variables and their derivatives. We illustrate the method and the tool by checking safety, liveness, timebounded, and duration requirements of digital controllers, schedulers, and distributed algorithms.
The Tool KRONOS
 In Proc. of Hybrid Systems III, LNCS 1066
, 1996
"... KRONOS [6, 8] is a tool developed with the aim to assist the user to validate complex realtime systems. The tool checks whether a realtinae system modeled by a timed automaton [4] satisfies a timing property specified by a formula of the temporal logic TCTL [3]. KRONOS implements the symbolic mode ..."
Abstract

Cited by 233 (39 self)
 Add to MetaCart
KRONOS [6, 8] is a tool developed with the aim to assist the user to validate complex realtime systems. The tool checks whether a realtinae system modeled by a timed automaton [4] satisfies a timing property specified by a formula of the temporal logic TCTL [3]. KRONOS implements the symbolic modelchecking
The Benefits of Relaxing Punctuality
, 1996
"... The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time differe ..."
Abstract

Cited by 202 (18 self)
 Add to MetaCart
The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time difference between events only with finite, yet arbitrary, precision and show the resulting logic to be EXPSPACEcomplete. This result allows us to develop an algorithm for the verification of timing properties of realtime systems with a dense semantics.
Reachability Analysis of Dynamical Systems having PiecewiseConstant Derivatives
 Theoretical Computer Science
, 1995
"... In this paper we consider a class of hybrid systems, namely dynamical systems with piecewiseconstant derivatives (PCD systems). Such systems consist of a partition of the Euclidean space into a finite set of polyhedral sets (regions). Within each region the dynamics is defined by a constant vector ..."
Abstract

Cited by 111 (18 self)
 Add to MetaCart
In this paper we consider a class of hybrid systems, namely dynamical systems with piecewiseconstant derivatives (PCD systems). Such systems consist of a partition of the Euclidean space into a finite set of polyhedral sets (regions). Within each region the dynamics is defined by a constant vector field, hence discrete transitions occur only on the boundaries between regions where the trajectories change their direction. With respect to such systems we investigate the reachability question: Given an effective description of the systems and of two polyhedral subsets P and Q of the statespace, is there a trajectory starting at some x 2 P and reaching some point in Q? Our main results are a decision procedure for twodimensional systems, and an undecidability result for three or more dimensions. 1 Introduction 1.1 Motivation Hybrid systems (HS) are systems that combine intercommunicating discrete and continuous components. Most embedded systems belong to this class since they operate...
EventClock Automata: A Determinizable Class of Timed Automata
 Theoretical Computer Science
, 1999
"... We introduce eventrecording automata. An eventrecording automaton is a timed automaton that contains, for every event a, a clock that records the time of the last occurrence of a. The class of eventrecording automata is, on one hand, expressive enough to model (finite) timed transition systems an ..."
Abstract

Cited by 91 (3 self)
 Add to MetaCart
We introduce eventrecording automata. An eventrecording automaton is a timed automaton that contains, for every event a, a clock that records the time of the last occurrence of a. The class of eventrecording automata is, on one hand, expressive enough to model (finite) timed transition systems and, on the other hand, determinizable and closed under all boolean operations. As a result, the language inclusion problem is decidable for eventrecording automata. We present a translation from timed transition systems to eventrecording automata, which leads to an algorithm for checking if two timed transition systems have the same set of timed behaviors. We also consider eventpredicting automata, which contain clocks that predict the time of the next occurrence of an event. The class of eventclock automata, which contain both eventrecording and eventpredicting clocks, is a suitable specification language for realtime properties. We provide an algorithm for checking if a timed automa...