Results 1  10
of
37
Computing shortest nontrivial cycles on orientable surfaces of bounded genus in almost linear time
 In SOCG ’06: Proc. 22nd Symp. Comput. Geom
, 2006
"... We present an algorithm that computes a shortest noncontractible and a shortest nonseparating cycle on an orientable combinatorial surface of bounded genus in O(n log n) time, where n denotes the complexity of the surface. This solves a central open problem in computational topology, improving upon ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
We present an algorithm that computes a shortest noncontractible and a shortest nonseparating cycle on an orientable combinatorial surface of bounded genus in O(n log n) time, where n denotes the complexity of the surface. This solves a central open problem in computational topology, improving upon the currentbest O(n 3/2)time algorithm by Cabello and Mohar (ESA 2005). Our algorithm uses universalcover constructions to find short cycles and makes extensive use of existing tools from the field. 1
Multiple source shortest paths in a genus g graph
 Proc. 18th Ann. ACMSIAM Symp. Discrete Algorithms
"... We give an O(g2n log n) algorithm to represent the shortest path tree from all the vertices on a single specified face f in a genus g graph. From this representation, any query distance from a vertex in f can be obtained in O(log n) time. The algorithm uses a kinetic data structure, where the source ..."
Abstract

Cited by 34 (13 self)
 Add to MetaCart
We give an O(g2n log n) algorithm to represent the shortest path tree from all the vertices on a single specified face f in a genus g graph. From this representation, any query distance from a vertex in f can be obtained in O(log n) time. The algorithm uses a kinetic data structure, where the source of the tree iteratively movesacrossedgesinf. In addition, we give applications using these shortest path trees in order to compute the shortest noncontractible cycle and the shortest nonseparating cycle embedded on an orientable 2manifold in O(g3n log n) time. 1
Approximation algorithms via contraction decomposition
 Proc. 18th Ann. ACMSIAM Symp. Discrete Algorithms ACMSIAM symposium on Discrete algorithms
, 2007
"... We prove that the edges of every graph of bounded (Euler) genus can be partitioned into any prescribed number k of pieces such that contracting any piece results in a graph of bounded treewidth (where the bound depends on k). This decomposition result parallels an analogous, simpler result for edge ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We prove that the edges of every graph of bounded (Euler) genus can be partitioned into any prescribed number k of pieces such that contracting any piece results in a graph of bounded treewidth (where the bound depends on k). This decomposition result parallels an analogous, simpler result for edge deletions instead of contractions, obtained in [Bak94, Epp00, DDO + 04, DHK05], and it generalizes a similar result for “compression ” (a variant of contraction) in planar graphs [Kle05]. Our decomposition result is a powerful tool for obtaining PTASs for contractionclosed problems (whose optimal solution only improves under contraction), a much more general class than minorclosed problems. We prove that any contractionclosed problem satisfying just a few simple conditions has a PTAS in boundedgenus graphs. In particular, our framework yields PTASs for the weighted Traveling Salesman Problem and for minimumweight cedgeconnected submultigraph on boundedgenus graphs, improving and generalizing previous algorithms of [GKP95, AGK + 98, Kle05, Gri00, CGSZ04, BCGZ05]. We also highlight the only main difficulty in extending our results to general Hminorfree graphs.
Tightening NonSimple Paths and Cycles on Surfaces
 SUBMITTED TO SIAM JOURNAL ON COMPUTING
"... We describe algorithms to compute the shortest path homotopic to a given path, or the shortest cycle freely homotopic to a given cycle, on an orientable combinatorial surface. Unlike earlier results, our algorithms do not require the input path or cycle to be simple. Given a surface with complexity ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
We describe algorithms to compute the shortest path homotopic to a given path, or the shortest cycle freely homotopic to a given cycle, on an orientable combinatorial surface. Unlike earlier results, our algorithms do not require the input path or cycle to be simple. Given a surface with complexity n, genus g ≥ 2, and no boundary, we construct in O(gn log n) time a tight octagonal decomposition of the surface—a set of simple cycles, each as short as possible in its free homotopy class, that decompose the surface into a complex of octagons meeting four at a vertex. After the surface is preprocessed, we can compute the shortest path homotopic to a given path of complexity k in O(gnk) time, or the shortest cycle homotopic to a given cycle of complexity k in O(gnk log(nk)) time. A similar algorithm computes shortest homotopic curves on surfaces with boundary or with genus 1. We also prove that the recent algorithms of Colin de Verdière and Lazarus for shortening embedded graphs and sets of cycles have running times polynomial in the complexity of the surface and the input curves, regardless of the surface geometry.
Splitting (complicated) surfaces is hard
 COMPUT. GEOM. THEORY APPL
, 2006
"... Let M be an orientable surface without boundary. A cycle on M is splitting if it has no selfintersections and it partitions M into two components, neither homeomorphic to a disk. In other words, splitting cycles are simple, separating, and noncontractible. We prove that finding the shortest splitt ..."
Abstract

Cited by 24 (10 self)
 Add to MetaCart
Let M be an orientable surface without boundary. A cycle on M is splitting if it has no selfintersections and it partitions M into two components, neither homeomorphic to a disk. In other words, splitting cycles are simple, separating, and noncontractible. We prove that finding the shortest splitting cycle on a combinatorial surface is NPhard but fixedparameter tractable with respect to the surface genus. Specifically, we describe an algorithm to compute the shortest splitting cycle in g^O(g) n log n time.
Minimum Cuts and Shortest Homologous Cycles
 SYMPOSIUM ON COMPUTATIONAL GEOMETRY
, 2009
"... We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the spec ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
We describe the first algorithms to compute minimum cuts in surfaceembedded graphs in nearlinear time. Given an undirected graph embedded on an orientable surface of genus g, with two specified vertices s and t, our algorithm computes a minimum (s, t)cut in g O(g) n log n time. Except for the special case of planar graphs, for which O(n log n)time algorithms have been known for more than 20 years, the best previous time bounds for finding minimum cuts in embedded graphs follow from algorithms for general sparse graphs. A slight generalization of our minimumcut algorithm computes a minimumcost subgraph in every Z2homology class. We also prove that finding a minimumcost subgraph homologous to a single input cycle is NPhard.
Distributed coverage verification in sensor networks without location information
 IEEE Transactions on Automatic Control
"... Distributed coverage verification in sensor networks without location information ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
Distributed coverage verification in sensor networks without location information
Graph and map isomorphism and all polyhedral embeddings in linear time
 In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC
, 2008
"... For every surface S (orientable or nonorientable), we give a linear time algorithm to test the graph isomorphism of two graphs, one of which admits an embedding of facewidth at least 3 into S. This improves a previously known algorithm whose time complexity is n O(g),wheregis the genus of S. This ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
For every surface S (orientable or nonorientable), we give a linear time algorithm to test the graph isomorphism of two graphs, one of which admits an embedding of facewidth at least 3 into S. This improves a previously known algorithm whose time complexity is n O(g),wheregis the genus of S. This is the first algorithm for which the degree of polynomial in the time complexity does not depend on g. The above result is based on two linear time algorithms, each of which solves a problem that is of independent interest. The first of these problems is the following one. Let S beafixedsurface. GivenagraphG andanintegerk≥3, we want to find an embedding of G in S of facewidth at least k, or conclude that such an embedding does not exist. It is known that this problem is NPhard when the surface is not fixed. Moreover, if there is an embedding, the algorithm can give all embeddings of facewidth at least k, up to Whitney equivalence. Here, the facewidth of an embedded graph G is the minimum number of points of G in which some noncontractible closed curve in the surface intersects the graph. In the proof of the above algorithm, we give a simpler proof and a better bound for the theorem by Mohar and Robertson concerning the number of polyhedral embeddings of 3connected graphs.
Finding one tight cycle
 Proc. 19th Ann. ACMSIAM Symp. Discrete Algorithms
"... A cycle on a combinatorial surface is tight if it as short as possible in its (free) homotopy class. We describe an algorithm to compute a single tight, noncontractible, essentially simple cycle on a given orientable combinatorial surface in O(n log n) time. The only method previously known for thi ..."
Abstract

Cited by 15 (12 self)
 Add to MetaCart
A cycle on a combinatorial surface is tight if it as short as possible in its (free) homotopy class. We describe an algorithm to compute a single tight, noncontractible, essentially simple cycle on a given orientable combinatorial surface in O(n log n) time. The only method previously known for this problem was to compute the globally shortest noncontractible or nonseparating cycle in O(min{g 3, n} nlog n) time, where g is the genus of the surface. As a consequence, we can compute the shortest cycle freely homotopic to a chosen boundary cycle in O(n log n) time, a tight octagonal decomposition in O(gn log n) time, and a shortest contractible cycle enclosing a nonempty set of faces in O(nlog 2 n) time.
The crossing number of a projective graph is quadratic in the facewidth
 ELECTRON J. COMBIN
, 2008
"... ..."