Results 1  10
of
29
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
Combining effects: sum and tensor
"... We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations that produce the effects. Effects qua theories are then combined by appropriate bifunctors on the category of theories. We give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer and an interactive input/output monad transformer. We further give a theory of the commutative combination of effects, their tensor, which yields Moggi’s sideeffects monad transformer. Finally we give a theory of operation transformers, for redefining operations when adding new effects; we derive explicit forms for the operation transformers associated to the above monad transformers.
Handlers of Algebraic Effects
"... Abstract. We present an algebraic treatment of exception handlers and, more generally, introduce handlers for other computational effects representable by an algebraic theory. These include nondeterminism, interactive input/output, concurrency, state, time, and their combinations; in all cases the c ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
Abstract. We present an algebraic treatment of exception handlers and, more generally, introduce handlers for other computational effects representable by an algebraic theory. These include nondeterminism, interactive input/output, concurrency, state, time, and their combinations; in all cases the computation monad is the freemodel monad of the theory. Each such handler corresponds to a model of the theory for the effects at hand. The handling construct, which applies a handler to a computation, is based on the one introduced by Benton and Kennedy, and is interpreted using the homomorphism induced by the universal property of the free model. This general construct can be used to describe previously unrelated concepts from both theory and practice. 1
A Model of Cooperative Threads
"... We develop a model of concurrent imperative programming with threads. We focus on a small imperative language with cooperative threads which execute without interruption until they terminate or explicitly yield control. We define and study a tracebased denotational semantics for this language; this ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We develop a model of concurrent imperative programming with threads. We focus on a small imperative language with cooperative threads which execute without interruption until they terminate or explicitly yield control. We define and study a tracebased denotational semantics for this language; this semantics is fully abstract but mathematically elementary. We also give an equational theory for the computational effects that underlie the language, including thread spawning. We then analyze threads in terms of the free algebra monad for this theory. 1
Combining algebraic effects with continuations
, 2007
"... We consider the natural combinations of algebraic computational effects such as sideeffects, exceptions, interactive input/output, and nondeterminism with continuations. Continuations are not an algebraic effect, but previously developed combinations of algebraic effects given by sum and tensor ext ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We consider the natural combinations of algebraic computational effects such as sideeffects, exceptions, interactive input/output, and nondeterminism with continuations. Continuations are not an algebraic effect, but previously developed combinations of algebraic effects given by sum and tensor extend, with effort, to include commonly used combinations of the various algebraic effects with continuations. Continuations also give rise to a third sort of combination, that given by applying the continuations monad transformer to an algebraic effect. We investigate the extent to which sum and tensor extend from algebraic effects to arbitrary monads, and the extent to which Felleisen et al.’s C operator extends from continuations to its combination with algebraic effects. To do all this, we use Dubuc’s characterisation of strong monads in terms of enriched large Lawvere theories.
A Generic Operational Metatheory for Algebraic Effects ∗
"... We provide a syntactic analysis of contextual preorder and equivalence for a polymorphic programming language with effects. Our approach applies uniformly to arbitrary algebraic effects, and thus incorporates, as instances: errors, input/output, global state, nondeterminism, probabilistic choice, an ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We provide a syntactic analysis of contextual preorder and equivalence for a polymorphic programming language with effects. Our approach applies uniformly to arbitrary algebraic effects, and thus incorporates, as instances: errors, input/output, global state, nondeterminism, probabilistic choice, and combinations thereof. Our approach is to extend Plotkin and Power’s structural operational semantics for algebraic effects (FoSSaCS 2001) with a primitive “basic preorder ” on ground type computation trees. The basic preorder is used to derive notions of contextual preorder and equivalence on program terms. Under mild assumptions on this relation, we prove fundamental properties of contextual preorder (hence equivalence) including extensionality properties, a characterisation via applicative contexts, and machinery for reasoning about polymorphism using relational parametricity. 1.
Just do it: Simple monadic equational reasoning
 In Proceedings of the 16th International Conference on Functional Programming (ICFP’11
, 2011
"... One of the appeals of pure functional programming is that it is so amenable to equational reasoning. One of the problems of pure functional programming is that it rules out computational effects. Moggi and Wadler showed how to get round this problem by using monads to encapsulate the effects, leadin ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
One of the appeals of pure functional programming is that it is so amenable to equational reasoning. One of the problems of pure functional programming is that it rules out computational effects. Moggi and Wadler showed how to get round this problem by using monads to encapsulate the effects, leading in essence to a phase distinction—a pure functional evaluation yielding an impure imperative computation. Still, it has not been clear how to reconcile that phase distinction with the continuing appeal of functional programming; does the impure imperative part become inaccessible to equational reasoning? We think not; and to back that up, we present a simple axiomatic approach to reasoning about programs with computational effects.
Monads and Adjunctions for Global Exceptions
, 2006
"... In this paper, we look at two categorical accounts of computational effects (strong monad as a model of the monadic metalanguage, adjunction as a model of callbypushvalue with stacks), and we adapt them to incorporate global exceptions. In each case, we extend the calculus with a construct, due t ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
In this paper, we look at two categorical accounts of computational effects (strong monad as a model of the monadic metalanguage, adjunction as a model of callbypushvalue with stacks), and we adapt them to incorporate global exceptions. In each case, we extend the calculus with a construct, due to Benton and Kennedy, that fuses exception handling with sequencing. This immediately gives us an equational theory, simply by adapting the equations for sequencing. We study the categorical semantics of the two equational theories. In the case of the monadic metalanguage, we see that a monad supporting exceptions is a coalgebra for a certain comonad. We further show, using Beck’s theorem, that, on a category with equalizers, the monad constructor for exceptions gives all such monads. In the case of callbypushvalue (CBPV) with stacks, we generalize the notion of CBPV adjunction so that a stack awaiting a value can deal both with a value being returned, and with an exception being raised. We see how to obtain a model of exceptions from a CBPV adjunction, and vice versa by restricting to those stacks that are homomorphic with respect to exception raising.
Monads in Action
"... In functional programming, monadic characterizations of computational effects are normally understood denotationally: they describe how an effectful program can be systematically expanded or translated into a larger, pure program, which can then be evaluated according to an effectfree semantics. An ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
In functional programming, monadic characterizations of computational effects are normally understood denotationally: they describe how an effectful program can be systematically expanded or translated into a larger, pure program, which can then be evaluated according to an effectfree semantics. Any effectspecific operations expressible in the monad are also given purely functional definitions, but these definitions are only directly executable in the context of an already translated program. This approach thus takes an inherently Churchstyle view of effects: the nominal meaning of every effectful term in the program depends crucially on its type. We present here a complementary, operational view of monadic effects, in which an effect definition directly induces an imperative behavior of the new operations expressible in the monad. This behavior is formalized as additional operational rules for only the new constructs; it does not require any structural changes to the evaluation judgment. Specifically, we give a smallstep operational semantics of a prototypical functional language supporting programmerdefinable, layered effects, and show how this semantics naturally supports reasoning by familiar syntactic techniques, such as showing soundness of a Currystyle effecttype system by the progress+preservation method.
On the construction of free algebras for equational systems
 IN: SPECIAL ISSUE FOR AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP 2007). VOLUME 410 OF THEORETICAL COMPUTER SCIENCE
, 2009
"... The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop the finitary and transfinite construction of free algebras for equational systems; and to illustrate the use of equational systems as needed in modern applica ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop the finitary and transfinite construction of free algebras for equational systems; and to illustrate the use of equational systems as needed in modern applications.