Results 1  10
of
39
Open Constraint Satisfaction
 in CP
, 2002
"... Abstract. Traditionally, constraint satisfaction has been applied in closedworld scenarios, where all choices and constraints are known from the beginning and fixed. With the Internet, many of the traditional CSP applications in resource allocation, scheduling and planning pose themselves in openwo ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
Abstract. Traditionally, constraint satisfaction has been applied in closedworld scenarios, where all choices and constraints are known from the beginning and fixed. With the Internet, many of the traditional CSP applications in resource allocation, scheduling and planning pose themselves in openworld settings, where choices and constraints are to be discovered from different servers in a network. We examine how such a distributed setting affects changes the assumptions underlying most CSP algorithms, and show how solvers can be augmented with an information gathering component that allows openworld constraint satisfaction. We report on experiments that show strong performance of such methods over others where gathering information and solving the CSP are separated.
Modelling the Golomb Ruler Problem
, 1999
"... . The Golomb ruler problem has been proposed as a challenging constraint satisfaction problem. We consider a large number of different models of this problem, both binary and nonbinary. The problem can be modelled using quaternary constraints, but in practice using a set of auxiliary variables and ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
. The Golomb ruler problem has been proposed as a challenging constraint satisfaction problem. We consider a large number of different models of this problem, both binary and nonbinary. The problem can be modelled using quaternary constraints, but in practice using a set of auxiliary variables and ternary constraints gives better results. A binary encoding of the problem gives a smaller search tree, but is impractical because it takes far longer to run. We compare variable ordering heuristics and consider the use of implied constraints to improve propagation. We believe that more case studies such as this are essential to reduce the skill currently required for successful modelling. 1 Introduction In his AAAI98 invited talk, Gene Freuder identified modelling as one of the major hurdles preventing the uptake of constraint satisfaction technology. The availability of nonbinary constraints can increase the number of possible models of a problem amnd so makes modelling still more diffi...
Binary vs. nonbinary constraints
 Artificial Intelligence
, 2002
"... Fellowship program. 1 There are two well known transformations from nonbinary constraints to binary constraints applicable to constraint satisfaction problems (CSPs) with finite domains: the dual transformation and the hidden (variable) transformation. We perform a detailed formal comparison of the ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Fellowship program. 1 There are two well known transformations from nonbinary constraints to binary constraints applicable to constraint satisfaction problems (CSPs) with finite domains: the dual transformation and the hidden (variable) transformation. We perform a detailed formal comparison of these two transformations. Our comparison focuses on two backtracking algorithms that maintain a local consistency property at each node in their search tree: the forward checking and maintaining arc consistency algorithms. We first compare local consistency techniques such as arc consistency in terms of their inferential power when they are applied to the original (nonbinary) formulation and to each of its binary transformations. For example, we prove that enforcing arc consistency on the original formulation is equivalent to enforcing it on the hidden transformation. We then extend these results to the two backtracking algorithms. We are able to give either a theoretical bound on how much one formulation is better than another, or examples that show such a bound does not exist. For example, we prove that the performance of the forward checking algorithm applied to the hidden transformation of a problem is within a polynomial bound of the performance of the same algorithm applied to the dual transformation of the problem. Our results can be used to help decide if applying one of these transformations to all (or part) of a constraint satisfaction model would be beneficial. 2 1
Domain filtering consistencies for nonbinary constraints
 ARTIFICIAL INTELLIGENCE
, 2008
"... In nonbinary constraint satisfaction problems, the study of local consistencies that only prune values from domains has so far been largely limited to generalized arc consistency or weaker local consistency properties. This is in contrast with binary constraints where numerous such domain filtering ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
In nonbinary constraint satisfaction problems, the study of local consistencies that only prune values from domains has so far been largely limited to generalized arc consistency or weaker local consistency properties. This is in contrast with binary constraints where numerous such domain filtering consistencies have been proposed. In this paper we present a detailed theoretical, algorithmic and empirical study of domain filtering consistencies for nonbinary problems. We study three domain filtering consistencies that are inspired by corresponding variable based domain filtering consistencies for binary problems. These consistencies are stronger than generalized arc consistency, but weaker than pairwise consistency, which is a strong consistency that removes tuples from constraint relations. Among other theoretical results, and contrary to expectations, we prove that these new consistencies do not reduce to the variable based definitions of their counterparts on binary constraints. We propose a number of algorithms to achieve the three consistencies. One of these algorithms has a time complexity comparable to that for generalized arc consistency despite performing more pruning. Experiments demonstrate that our new consistencies are promising as they can be more efficient than generalized arc consistency on certain nonbinary problems.
Theory and practice of constraint propagation
 In Proceedings of the 3rd Workshop on Constraint Programming in Decision and Control
, 2001
"... Abstract: Despite successful application of constraint programming (CP) to solving many reallife problems there is still an indispensable group or researchers considering (wrongly) CP as a simple evaluation technique only. Even if sophisticated search algorithms play an important role in solving co ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Abstract: Despite successful application of constraint programming (CP) to solving many reallife problems there is still an indispensable group or researchers considering (wrongly) CP as a simple evaluation technique only. Even if sophisticated search algorithms play an important role in solving constraintbased models, the real power engine behind CP is called constraint propagation (domain filtering, pruning or consistency techniques). In the paper we give a survey of common consistency techniques for binary constraints. We describe the main ideas behind them, list their advantages and limitations, and compare their pruning power. Then we briefly explain how these techniques can be extended to nonbinary constraints. Last part of the paper is devoted to modelling issues. We give some hints how the constraint propagation can be exploited more when solving reallife problems. This part is based on our experience with solving reallife programs and it is also supported by empirical observations of other researchers.
Optimization of simple tabular reduction for table constraints
 In Proceedings of CP’08
, 2008
"... Abstract. Table constraints play an important role within constraint programming. Recently, many schemes or algorithms have been proposed to propagate table constraints or/and to compress their representation. We show that simple tabular reduction (STR), a technique proposed by J. Ullmann to dynamic ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
Abstract. Table constraints play an important role within constraint programming. Recently, many schemes or algorithms have been proposed to propagate table constraints or/and to compress their representation. We show that simple tabular reduction (STR), a technique proposed by J. Ullmann to dynamically maintain the tables of supports, is very often the most efficient practical approach to enforce generalized arc consistency within MAC. We also describe an optimization of STR which allows limiting the number of operations related to validity checking or search of supports. Interestingly enough, this optimization makes STR potentially r times faster where r is the arity of the constraint(s). The results of an extensive experimentation that we have conducted with respect to random and structured instances indicate that the optimized algorithm we propose is usually around twice as fast as the original STR and can be up to one order of magnitude faster than previous stateoftheart algorithms on some series of instances. 1
SAT v CSP
 PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING (CP00)
, 2000
"... We perform a comprehensive study of mappings between constraint satisfaction problems (CSPs) and propositional satisfiability (SAT). We analyse four different mappings of SAT problems into CSPs, and two of CSPs into SAT problems. For each mapping, we compare the impact of achieving arcconsistency o ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
We perform a comprehensive study of mappings between constraint satisfaction problems (CSPs) and propositional satisfiability (SAT). We analyse four different mappings of SAT problems into CSPs, and two of CSPs into SAT problems. For each mapping, we compare the impact of achieving arcconsistency on the CSP with unit propagation on the SAT problem. We then extend these results to CSP algorithms that maintain (some level of) arcconsistency during search like FC and MAC, and to the DavisPutnam procedure (which performs unit propagation at each search node). Because of differences in the branching structure of their search, a result showing the dominance of achieving arcconsistency on the CSP over unit propagation on the SAT problem does not necessarily translate to the dominance of MAC over the DavisPutnam procedure. These results provide insight into the relationship between propositional satisfiability and constraint satisfaction.
A Dual Graph Translation of a Problem in `Life'
, 2002
"... Conway's game of Life provides interesting problems in which modelling issues in constraint programming can be explored. The problem of finding a maximum density stable pattern (`stilllife') is discussed. A formulation of this problem as a constraint satisfaction problem with 01 variable ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
Conway's game of Life provides interesting problems in which modelling issues in constraint programming can be explored. The problem of finding a maximum density stable pattern (`stilllife') is discussed. A formulation of this problem as a constraint satisfaction problem with 01 variables and nonbinary constraints is compared with its dual graph translation into a binary CSP. The success of the dual translation is surprising, from previouslyreported experience, since it has as many variables as the nonbinary CSP and very large domains. An important factor is the identification of many redundant constraints: it is shown that these can safely be removed from a dual graph translation if arc consistency is maintained during search. 1
Open constraint optimization
 In Int
, 2003
"... Abstract. Constraint satisfaction has been applied with great success in closedworld scenarios, where all options and constraints are known from the beginning and fixed. With the internet, many of the traditional CSP applications in resource allocation, scheduling and planning pose themselves in op ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Abstract. Constraint satisfaction has been applied with great success in closedworld scenarios, where all options and constraints are known from the beginning and fixed. With the internet, many of the traditional CSP applications in resource allocation, scheduling and planning pose themselves in openworld settings, where options and constraints must be gathered from different agents in a network. We define open constraint optimization as a model of such tasks. Under the assumption that options are discovered in decreasing order of preference, it becomes possible to guarantee optimality even when domains and constraints are not completely known. We propose several algorithms for solving open constraint optimization problems by incrementally gathering options through the network. We report empirical results on their performance on random problems, and analyze how to achieve optimality with a minimal number of queries to the information sources.
Firstorder decisiontheoretic planning in structured relational environments
, 2008
"... We consider the general framework of firstorder decisiontheoretic planning in structured relational environments. Most traditional solution approaches to these planning problems ground the relational specification w.r.t. a specific domain instantiation and apply a solution approach directly to the ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We consider the general framework of firstorder decisiontheoretic planning in structured relational environments. Most traditional solution approaches to these planning problems ground the relational specification w.r.t. a specific domain instantiation and apply a solution approach directly to the resulting ground Markov decision process (MDP). Unfortunately, the space and time complexity of these solution algorithms scale linearly with the domain size in the best case and exponentially in the worst case. An alternate approach to grounding a relational planning problem is to lift it to a firstorder MDP (FOMDP) specification. This FOMDP can then be solved directly, resulting in a domainindependent solution whose space and time complexity either do not scale with domain size or can scale sublinearly in the domain size. However, such generality does not come without its own set of challenges and the first purpose of this thesis is to explore exact and approximate solution techniques for practically solving FOMDPs. The second purpose of this thesis is to extend the FOMDP specification to succinctly capture factored actions and additive rewards while extending the exact and approximate solution techniques to directly exploit this structure. In addition, we provide a proof of correctness of the firstorder symbolic dynamic programming approach w.r.t. its wellstudied ground MDP