Results 1  10
of
76
Option pricing when underlying stock returns are discontinuous
 Journal of Financial Economics
, 1976
"... The validity of the classic BlackScholes option pricing formula dcpcnds on the capability of investors to follow a dynamic portfolio strategy in the stock that replicates the payoff structure to the option. The critical assumption required for such a strategy to be feasible, is that the underlying ..."
Abstract

Cited by 507 (1 self)
 Add to MetaCart
The validity of the classic BlackScholes option pricing formula dcpcnds on the capability of investors to follow a dynamic portfolio strategy in the stock that replicates the payoff structure to the option. The critical assumption required for such a strategy to be feasible, is that the underlying stock return dynamics can be described by a stochastic process with a continuous sample path. In this paper, an option pricing formula is derived for the moregeneral cast when the underlying stock returns are gcncrated by a mixture of both continuous and jump processes. The derived formula has most of the attractive features of the original Black&holes formula in that it does not dcpcnd on investor prcfcrenccs or knowledge of the expcctsd return on the underlying stock. Morcovcr, the same analysis applied to the options can bc extcndcd to the pricingofcorporatc liabilities. 1. Intruduction In their classic paper on the theory of option pricing, Black and Scholcs (1973) prcscnt a mode of an:llysis that has rcvolutionizcd the theory of corporate liability pricing. In part, their approach was a breakthrough because it leads to pricing formulas using. for the most part, only obscrvablc variables. In particular,
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
Randomization and the American Put
 The Review of Financial Studies
, 1998
"... Conference. In particular, I am grateful to an unknown RFS referee, Kerry Back, Michael Brennan, Darrell Du e, ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
Conference. In particular, I am grateful to an unknown RFS referee, Kerry Back, Michael Brennan, Darrell Du e,
Alternative characterizations of American put options
 Mathematical Finance
, 1992
"... Viswanathan, and the participants of workshops at Vanderbilt University and Cornell University. The first two authors are grateful for financial support from Banker’s Trust. We are particularly grateful to Henry McKean for many valuable discussions. Alternative Characterizations of American Put Opti ..."
Abstract

Cited by 46 (1 self)
 Add to MetaCart
Viswanathan, and the participants of workshops at Vanderbilt University and Cornell University. The first two authors are grateful for financial support from Banker’s Trust. We are particularly grateful to Henry McKean for many valuable discussions. Alternative Characterizations of American Put Options We derive alternative representations of the McKean equation for the value of the American put option. Our main result decomposes the value of an American put option into the corresponding European put price and the early exercise premium. We then represent the European put price in a new manner. This representation allows us to alternatively decompose the price of an American put option into its intrinsic value and time value, and to demonstrate the equivalence of our results to the McKean equation. Alternative Characterizations of American Put Options The problem of valuing American options continues to intrigue finance theorists. For example, in
Term structure models driven by general Lévy processes
, 1999
"... ) in the form f(t, T ) = f(0, T ) + Z t 0 # # (#(s, T ))# 2 (s, T )ds  Z t 0 # 2 (s, T )dL s . Here #(u) = log(E[exp(uL 1 )]) denotes the log of the moment generating function of L(L 1 ) and # 2 the partial derivative of # with respect to maturity. If r(t) = f(t, t) denotes the short rat ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
) in the form f(t, T ) = f(0, T ) + Z t 0 # # (#(s, T ))# 2 (s, T )ds  Z t 0 # 2 (s, T )dL s . Here #(u) = log(E[exp(uL 1 )]) denotes the log of the moment generating function of L(L 1 ) and # 2 the partial derivative of # with respect to maturity. If r(t) = f(t, t) denotes the short rate process we finally get the following representation for the bond price process P (t, T ) = P (0, T ) exp Z t 0 (r(s)  #(#(s,
The Russian Option: Reduced Regret
, 1993
"... this paper the value of the option (i.e. the supremum in (1.2)) will be found exactly, and in particular it will be shown that the maximum in (1.2) is finite if and only if r ? ¯ : (1.4) Assuming (1.4), an explicit formula is given for both the maximal expected present value and the optimal stopping ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
this paper the value of the option (i.e. the supremum in (1.2)) will be found exactly, and in particular it will be shown that the maximum in (1.2) is finite if and only if r ? ¯ : (1.4) Assuming (1.4), an explicit formula is given for both the maximal expected present value and the optimal stopping rule in (2.4), which is not a fixed time rule but depends heavily on the observed values of X t and S t . We call the financial option described above a "Russian option" for two reasons. First, this name serves to (facetiously) differentiate it from American and European options, which have been extensively studied in financial economics, especially with the new interest in market economics in Russia. Second, our solution of the stopping problem (1.2) is derived by the socalled principle of smooth fit, first enunciated by the great Russian mathematician, A. N. Kolmogorov, cf. [4, 5]. The Russian option is characterized by "reduced regret" because the owner is paid the maximum stock price up to the time of exercise and hence feels less remorse at not having exercised at the maximum. For purposes of comparison and to emphasize the mathematical nature of the contribution here, we conclude the paper by analyzing an optimal stopping problem for the Russian option based on Bachelier's (1900) original linear model of stock price fluctuations, X
Lévy Processes in Finance: Theory, Numerics, and Empirical Facts
, 2000
"... Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the one hand, they are very flexible, since for any time increment ∆t any infinitely divisible distribution can be chosen as the increment distribution over periods of time ∆t. On the other hand, they have ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the one hand, they are very flexible, since for any time increment ∆t any infinitely divisible distribution can be chosen as the increment distribution over periods of time ∆t. On the other hand, they have a simple structure in comparison with general semimartingales. Thus stochastic models based on Lévy processes often allow for analytically or numerically tractable formulas. This is a key factor for practical applications. This thesis is divided into two parts. The first, consisting of Chapters 1, 2, and 3, is devoted to the study of stock price models involving exponential Lévy processes. In the second part, we study term structure models driven by Lévy processes. This part is a continuation of the research that started with the author's diploma thesis Raible (1996) and the article Eberlein and Raible (1999). The content of the chapters is as follows. In Chapter 1, we study a general stock price model where the price of a single stock follows an exponential Lévy process. Chapter 2 is devoted to the study of the Lévy measure of infinitely divisible distributions, in particular of generalized hyperbolic distributions. This yields information about what changes in the distribution of a generalized hyperbolic Lévy motion can be achieved by a locally equivalent change of the underlying probability measure. Implications for
Continuoustime methods in finance: A review and an assessment
 Journal of Finance
, 2000
"... I survey and assess the development of continuoustime methods in finance during the last 30 years. The subperiod 1969 to 1980 saw a dizzying pace of development with seminal ideas in derivatives securities pricing, term structure theory, asset pricing, and optimal consumption and portfolio choices. ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
I survey and assess the development of continuoustime methods in finance during the last 30 years. The subperiod 1969 to 1980 saw a dizzying pace of development with seminal ideas in derivatives securities pricing, term structure theory, asset pricing, and optimal consumption and portfolio choices. During the period 1981 to 1999 the theory has been extended and modified to better explain empirical regularities in various subfields of finance. This latter subperiod has seen significant progress in econometric theory, computational and estimation methods to test and implement continuoustime models. Capital market frictions and bargaining issues are being increasingly incorporated in continuoustime theory. THE ROOTS OF MODERN CONTINUOUSTIME METHODS in finance can be traced back to the seminal contributions of Merton ~1969, 1971, 1973b! in the late 1960s and early 1970s. Merton ~1969! pioneered the use of continuoustime modeling in financial economics by formulating the intertemporal consumption and portfolio choice problem of an investor in a stochastic dynamic programming setting.
Risk vs. ProfitPotential; A Model for Corporate Strategy
 J. Econ. Dynam. Control
, 1996
"... A firm whose net earnings are uncertain, and that is subject to the risk of bankruptcy, must choose between paying dividends and retaining earnings in a liquid reserve. Also, different operating strategies imply different combinations of expected return and variance. We model the firm's cash reserve ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
A firm whose net earnings are uncertain, and that is subject to the risk of bankruptcy, must choose between paying dividends and retaining earnings in a liquid reserve. Also, different operating strategies imply different combinations of expected return and variance. We model the firm's cash reserve as the difference between the cumulative net earnings and the cumulative dividends. The first is a diffusion (additive), whose drift/volatility pair is chosen dynamically from a finite set, A. The second is an arbitrary nondecreasing process, chosen by the firm. The firm's strategy must be nonclairvoyant. The firm is bankrupt at the first time, T , at which the cash reserve falls to zero (T may be infinite), and the firm's objective is to maximize the expected total discounted dividends from 0 to T , given an initial reserve, x; denote this maximum by V (x). We calculate V explicitly, as a function of the set A and the discount rate. The optimal policy has the form: (1) pay no dividends if ...
On American options under the Variance Gamma process
 Applied Mathematical Finance
, 2004
"... We consider American options in a market where the underlying asset follows a Variance Gamma process. We give a sufficient condition for the failure of the smooth fit principle for finite horizon call options. We also propose a second order accurate finitedifference method to find the American opti ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
We consider American options in a market where the underlying asset follows a Variance Gamma process. We give a sufficient condition for the failure of the smooth fit principle for finite horizon call options. We also propose a second order accurate finitedifference method to find the American option price and the exercise boundary. The problem is formulated as a Linear Complementarity Problem and numerically solved by a convenient splitting. Computations have been accelerated with the help of the Fast Fourier Transform. A stability analysis shows that the scheme is conditionally stable, with a mild stability condition of the form k = O(log(h)  −1). The theoretical results are verified numerically throughout a series of numerical experiments. Keywords: Integrodifferential equations, Variance Gamma, finite differences, FFT.