Results 1  10
of
101
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 210 (9 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Pregel: A system for largescale graph processing
 In SIGMOD
, 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract

Cited by 193 (0 self)
 Add to MetaCart
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model suitable for this task. Programs are expressed as a sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, send messages to other vertices, and modify its own state and that of its outgoing edges or mutate graph topology. This vertexcentric approach is flexible enough to express a broad set of algorithms. The model has been designed for efficient, scalable and faulttolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier. Distributionrelated details are hidden behind an abstract API. The result is a framework for processing large graphs that is expressive and easy to program.
Routing in networks with low doubling dimension
 In 26 th International Conference on Distributed Computing Systems (ICDCS). IEEE Computer
, 2006
"... This paper studies compact routing schemes for networks with low doubling dimension. Two variants are explored, nameindependent routing and labeled routing. The key results obtained for this model are the following. First, we provide the first nameindependent solution. Specifically, we achieve con ..."
Abstract

Cited by 63 (8 self)
 Add to MetaCart
This paper studies compact routing schemes for networks with low doubling dimension. Two variants are explored, nameindependent routing and labeled routing. The key results obtained for this model are the following. First, we provide the first nameindependent solution. Specifically, we achieve constant stretch and polylogarithmic storage. Second, we obtain the first truly scalefree solutions, namely, the network’s aspect ratio is not a factor in the stretch. Scalefree schemes are given for three problem models: nameindependent routing on graphs, labeled routing on metric spaces, and labeled routing on graphs. Third, we prove a lower bound requiring linear storage for stretch < 3 schemes. This has the important ramification of separating for the first time the nameindependent problem model from the labeled model for these networks, since compact stretch1+ε labeled schemes are known to be possible.
All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Multiplication
 Journal of the ACM
, 2000
"... We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves... ..."
Abstract

Cited by 62 (6 self)
 Add to MetaCart
We present two new algorithms for solving the All Pairs Shortest Paths (APSP) problem for weighted directed graphs. Both algorithms use fast matrix multiplication algorithms. The first algorithm solves...
Reach for A∗: Efficient pointtopoint shortest path algorithms
 IN WORKSHOP ON ALGORITHM ENGINEERING & EXPERIMENTS
, 2006
"... We study the pointtopoint shortest path problem in a setting where preprocessing is allowed. We improve the reachbased approach of Gutman [16] in several ways. In particular, we introduce a bidirectional version of the algorithm that uses implicit lower bounds and we add shortcut arcs which reduc ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
We study the pointtopoint shortest path problem in a setting where preprocessing is allowed. We improve the reachbased approach of Gutman [16] in several ways. In particular, we introduce a bidirectional version of the algorithm that uses implicit lower bounds and we add shortcut arcs which reduce vertex reaches. Our modifications greatly reduce both preprocessing and query times. The resulting algorithm is as fast as the best previous method, due to Sanders and Schultes [27]. However, our algorithm is simpler and combines in a natural way with A∗ search, which yields significantly better query times.
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Heuristic Search
, 2011
"... Heuristic search is used to efficiently solve the singlenode shortest path problem in weighted graphs. In practice, however, one is not only interested in finding a short path, but an optimal path, according to a certain cost notion. We propose an algebraic formalism that captures many cost notions ..."
Abstract

Cited by 40 (22 self)
 Add to MetaCart
Heuristic search is used to efficiently solve the singlenode shortest path problem in weighted graphs. In practice, however, one is not only interested in finding a short path, but an optimal path, according to a certain cost notion. We propose an algebraic formalism that captures many cost notions, like typical Quality of Service attributes. We thus generalize A*, the popular heuristic search algorithm, for solving optimalpath problem. The paper provides an answer to a fundamental question for AI search, namely to which general notion of cost, heuristic search algorithms can be applied. We proof correctness of the algorithms and provide experimental results that validate the feasibility of the approach.
SingleSource ShortestPaths on Arbitrary Directed Graphs in Linear AverageCase Time
 In Proc. 12th ACMSIAM Symposium on Discrete Algorithms
, 2001
"... The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w 1g where w denotes the word length, the currently best time bound for directed sparse graphs on a RAM is O(n + m log log n). In the present paper we study the averagecase complexity of SSSP. We give a simple algorithm for arbitrary directed graphs with random edge weights uniformly distributed in [0; 1] and show that it needs linear time O(n + m) with high probability. 1 Introduction The singlesource shortestpath problem (SSSP) is a fundamental and wellstudied combinatorial optimization problem with many practical and theoretical applications [1]. Let G = (V; E) be a directed graph, jV j = n, jEj = m, let s be a distinguished vertex of the graph, and c be a function assigning a n...
LinearTime PointerMachine Algorithms for Least Common Ancestors, MST Verification, and Dominators
 IN PROCEEDINGS OF THE THIRTIETH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1998
"... We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, randomized MST construction, and computing dominators in a flowgraph.