Results 11  20
of
69
An introduction to ncategories
 In 7th Conference on Category Theory and Computer Science
, 1997
"... ..."
Monads and Modular Term Rewriting
, 1997
"... . Monads can be used to model term rewriting systems by generalising the wellknown equivalence between universal algebra and monads on the category Set. In [Lu96], the usefulness of this semantics was demonstrated by giving a purely categorical proof of the modularity of confluence for the disjoint ..."
Abstract

Cited by 20 (13 self)
 Add to MetaCart
. Monads can be used to model term rewriting systems by generalising the wellknown equivalence between universal algebra and monads on the category Set. In [Lu96], the usefulness of this semantics was demonstrated by giving a purely categorical proof of the modularity of confluence for the disjoint union of term rewriting systems (Toyama's theorem). This paper provides further support for the use of monads in term rewriting by giving a categorical proof of the most general theorem concerning the modularity of strong normalisation. In the process, we also improve upon some technical aspects of the earlier work. 1 Introduction Term rewriting systems (TRSs) are widely used throughout computer science as they provide an abstract model of computation while retaining a relatively simple syntax and semantics. Reasoning about large term rewriting systems can be very difficult and an alternative is to define structuring operations which build large term rewriting systems from smaller ones. Of...
Double Loop Spaces, Braided Monoidal Categories and Algebraic 3Type of Space
 Math
, 1997
"... We show that the nerve of a braided monoidal category carries a natural action of a simplicial E2operad and is thus up to group completion a double loop space. Shifting up dimension twice associates to each braided monoidal category a 1reduced lax 3category whose nerve realizes an explicit double ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
We show that the nerve of a braided monoidal category carries a natural action of a simplicial E2operad and is thus up to group completion a double loop space. Shifting up dimension twice associates to each braided monoidal category a 1reduced lax 3category whose nerve realizes an explicit double delooping whenever all cells are invertible. We deduce that lax 3groupoids are algebraic models for homotopy 3types. Introduction The concept of braiding as a refinement of symmetry is the starting point of a rich interplay between geometry (knot theory) and algebra (representation theory). The underlying structure of a braided monoidal category reveals an interest of its own in that it encompasses two at first sight different geometrical objects : double loop spaces and homotopy 3types. The link to double loop spaces was pointed out by J. Stasheff [38] and made precise by Z. Fiedorowicz [15], who proves that double loop spaces may be characterized (up to group completion) as algebras o...
An Algebraic Construction of Predicate Transformers
 Science of Computer Programming
, 1994
"... . In this paper we present an algebraic construction of monotonic predicate transformers, using a categorical construction which is similar to the algebraic construction of the integers from the natural numbers. When applied to the category of sets and total functions once, it yields a category isom ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
. In this paper we present an algebraic construction of monotonic predicate transformers, using a categorical construction which is similar to the algebraic construction of the integers from the natural numbers. When applied to the category of sets and total functions once, it yields a category isomorphic to the category of sets and relations; a second application yields a category isomorphic to the category of monotonic predicate transformers. This hierarchy cannot be extended further: the category of total functions is not itself an instance of the categorical construction, and can only be extended by it twice. 1 Introduction Predicate transformers were introduced originally by Dijkstra [8] in order to provide an elegant semantics for his programming language. Their strength lies in the fact that they can be used to model nondeterministic and nonterminating behaviour in terms of total functions, rather than relations. Not all monotonic predicate transformers represent programs in ...
Pasting Schemes for the Monoidal Biclosed Structure on
, 1995
"... Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a gen ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a general and uniform definition of higher dimensional lax natural transformations, and a nice and transparent description of the corresponding internal homs. Further consequences will be in the development of a theory for weak ncategories, since both tensor products and lax structures are crucial in this. Contents 1 Introduction 3 2 Cubes and cubical sets 5 2.1 Cubes combinatorially : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 A model category for cubes : : : : : : : : : : : : : : : : : : : : : 6 2.3 Generating the model category for cubes : : : : : : : : : : : : : : 7 2.4 Cubical sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.5 Duality : : : : : : : : : : : : : ...
Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
 Mem. Amer. Math. Soc
"... The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjun ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjunction, are necessary for this
Doctrines Whose Structure Forms A Fully Faithful Adjoint String
 Theory Appl. Categ
, 1997
"... . We pursue the definition of a KZdoctrine in terms of a fully faithful adjoint string Dd a m a dD. We give the definition in any Graycategory. The concept of algebra is given as an adjunction with invertible counit. We show that these doctrines are instances of more general pseudomonads. The alge ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
. We pursue the definition of a KZdoctrine in terms of a fully faithful adjoint string Dd a m a dD. We give the definition in any Graycategory. The concept of algebra is given as an adjunction with invertible counit. We show that these doctrines are instances of more general pseudomonads. The algebras for a pseudomonad are defined in more familiar terms and shown to be the same as the ones defined as adjunctions when we start with a KZdoctrine. 1. Introduction Free cocompletions of categories under suitable classes of colimits were the motivating examples for the definition of KZdoctrines. We introduce in this paper a notstrict version of such doctrines defined via a fully faithful adjoint string. Thus, a nonstrict KZdoctrine on a 2category K consists of a normal endo homomorphism D : K \Gamma! K, and strong transformations d : 1K \Gamma! D, and m : DD \Gamma! D in such a way that Dd a m a dD forms a fully faithful adjoint string, satisfying one equation involving the unit of...
Mackaay: Categorical representations of categorical groups
, 2004
"... The representation theory for categorical groups is constructed. Each categorical group determines a monoidal bicategory of representations. Typically, these categories contain representations which are indecomposable but not irreducible. A simple example is computed in explicit detail. 1 ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
The representation theory for categorical groups is constructed. Each categorical group determines a monoidal bicategory of representations. Typically, these categories contain representations which are indecomposable but not irreducible. A simple example is computed in explicit detail. 1
Natural weak factorization systems
 Archivum Mathematicum
"... Dedicated to Jiˇrí Rosick´y at the occasion of his sixtieth birthday Abstract. In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the categor ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Dedicated to Jiˇrí Rosick´y at the occasion of his sixtieth birthday Abstract. In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category K is introduced, as a pair (comonad, monad) overK 2. The link with existing notions in terms of morphism classes is given via the respective Eilenberg– Moore categories. 1.