Results 1  10
of
19
Higher dimensional algebra III: ncategories and the algebra of opetopes
, 1997
"... We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads ..."
Abstract

Cited by 74 (6 self)
 Add to MetaCart
We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads over O. Letting I be the initial operad with a oneelement set of types, and defining I 0+ = I, I (i+1)+ = (I i+) +, we call the operations of I (n−1)+ the ‘ndimensional opetopes’. Opetopes form a category, and presheaves on this category are called ‘opetopic sets’. A weak ncategory is defined as an opetopic set with certain properties, in a manner reminiscent of Street’s simplicial approach to weak ωcategories. In a similar manner, starting from an arbitrary operad O instead of I, we define ‘ncoherent Oalgebras’, which are n times categorified analogs of algebras of O. Examples include ‘monoidal ncategories’, ‘stable ncategories’, ‘virtual nfunctors ’ and ‘representable nprestacks’. We also describe how ncoherent Oalgebra objects may be defined in any (n + 1)coherent Oalgebra.
Generalized Centers of Braided and Sylleptic Monoidal 2Categories
, 1997
"... Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give ge ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give generalized center constructions for braided and sylleptic monoidal 2categories which give sylleptic and symmetric monoidal 2categories respectively, and I correct some errors in the original center construction for monoidal 2categories. 1 Introduction The initial motivation for the study of braided monoidal categories was twofold: from homotopy theory, where braided monoidal categories of a particular kind arise as algebraic 3types of arcconnected, simply connected spaces, and from higherdimensional category theory, where braided monoidal categories arise as one object monoidal bicategories [16]. These motivations have subsequently been brought together by the definition of tricategori...
An introduction to ncategories
 In 7th Conference on Category Theory and Computer Science
, 1997
"... ..."
Cubical Sets And Their Site
 Theory Appl. Categ
, 2003
"... Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicia ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicial analogue, by generators and relations, or by the existence of a universal symmetric cubical monoid ; in fact, K is the classifying category of a monoidal algebraic theory of such monoids. Analogous results are given for the restricted cubical site I of ordinary cubical sets (just faces and degeneracies) and for the intermediate site J (including connections). We also consider briefly the reversible analogue, !K.
A Tensor Product for GrayCategories
, 1999
"... In this paper I extend Gray's tensor product of 2categories to a new tensor product of Graycategories. I give a description in terms of generators and relations, one of the relations being an "interchange" relation, and a description similar to Gray's description of his tensor product of 2categor ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
In this paper I extend Gray's tensor product of 2categories to a new tensor product of Graycategories. I give a description in terms of generators and relations, one of the relations being an "interchange" relation, and a description similar to Gray's description of his tensor product of 2categories. I show that this tensor product of Graycategories satisfies a universal property with respect to quasifunctors of two variables, which are defined in terms of laxnatural transformations between Graycategories. The main result is that this tensor product is part of a monoidal structure on GrayCat, the proof requiring interchange in an essential way. However, this does not give a monoidal (bi)closed structure, precisely because of interchange. And although I define composition of laxnatural transformations, this composite need not be a laxnatural transformation again, making GrayCat only a partial (GrayCat)\Omega  CATegory.
Categorification
 Contemporary Mathematics 230. American Mathematical Society
, 1997
"... Categorification is the process of finding categorytheoretic analogs of settheoretic concepts by replacing sets with categories, functions with functors, and equations between functions by natural isomorphisms between functors, which in turn should satisfy certain equations of their own, called ‘c ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Categorification is the process of finding categorytheoretic analogs of settheoretic concepts by replacing sets with categories, functions with functors, and equations between functions by natural isomorphisms between functors, which in turn should satisfy certain equations of their own, called ‘coherence laws’. Iterating this process requires a theory of ‘ncategories’, algebraic structures having objects, morphisms between objects, 2morphisms between morphisms and so on up to nmorphisms. After a brief introduction to ncategories and their relation to homotopy theory, we discuss algebraic structures that can be seen as iterated categorifications of the natural numbers and integers. These include tangle ncategories, cobordism ncategories, and the homotopy ntypes of the loop spaces Ω k S k. We conclude by describing a definition of weak ncategories based on the theory of operads. 1
Resolutions By Polygraphs
, 2003
"... A notion of resolution for higherdimensional categories is defined, by using polygraphs, and basic invariance theorems are proved. ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
A notion of resolution for higherdimensional categories is defined, by using polygraphs, and basic invariance theorems are proved.
Twisted differential nonabelian cohomology Twisted (n−1)brane nbundles and their ChernSimons (n+1)bundles with characteristic (n + 2)classes
, 2008
"... We introduce nonabelian differential cohomology classifying ∞bundles with smooth connection and their higher gerbes of sections, generalizing [138]. We construct classes of examples of these from lifts, twisted lifts and obstructions to lifts through shifted central extensions of groups by the shif ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
We introduce nonabelian differential cohomology classifying ∞bundles with smooth connection and their higher gerbes of sections, generalizing [138]. We construct classes of examples of these from lifts, twisted lifts and obstructions to lifts through shifted central extensions of groups by the shifted abelian ngroup B n−1 U(1). Notable examples are String 2bundles [9] and Fivebrane 6bundles [133]. The obstructions to lifting ordinary principal bundles to these, hence in particular the obstructions to lifting Spinstructures to Stringstructures [13] and further to Fivebranestructures [133, 52], are abelian ChernSimons 3 and 7bundles with characteristic class the first and second fractional Pontryagin class, whose abelian cocycles have been constructed explicitly by Brylinski and McLaughlin [35, 36]. We realize their construction as an abelian component of obstruction theory in nonabelian cohomology by ∞Lieintegrating the L∞algebraic data in [132]. As a result, even if the lift fails, we obtain twisted String 2 and twisted Fivebrane 6bundles classified in twisted nonabelian (differential) cohomology and generalizing the twisted bundles appearing in twisted Ktheory. We explain the GreenSchwarz mechanism in heterotic string theory in terms of twisted String 2bundles and its magnetic dual version – according to [133] – in terms of twisted Fivebrane 6bundles. We close by transgressing differential cocycles to mapping
Presentations of OmegaCategories By Directed Complexes
, 1997
"... The theory of directed complexes is extended from free !categories to arbitrary ! categories by defining presentations in which the generators are atoms and the relations are equations between molecules. Our main result relates these presentations to the more standard algebraic presentations; we ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The theory of directed complexes is extended from free !categories to arbitrary ! categories by defining presentations in which the generators are atoms and the relations are equations between molecules. Our main result relates these presentations to the more standard algebraic presentations; we also show that every !category has a presentation by directed complexes. The approach is similar to that used by Crans for pasting presentations. 1991 Mathematics Subject Classification: 18D05. 1 Introduction There are at present three combinatorial structures for constructing !categories: pasting schemes, defined in 1988 by Johnson [8], parity complexes, introduced in 1991 by Street [16, 17] and directed complexes, given by Steiner in 1993 [15]. These structures each consist of cells which have collections of lower dimensional cells as domain and codomain; see for example Definition 2.2 below. They also have `local' conditions on the cells, ensuring that a cell together with its boundin...