Results 1  10
of
35
Higher dimensional algebra III: ncategories and the algebra of opetopes
, 1997
"... We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads ..."
Abstract

Cited by 74 (6 self)
 Add to MetaCart
We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads over O. Letting I be the initial operad with a oneelement set of types, and defining I 0+ = I, I (i+1)+ = (I i+) +, we call the operations of I (n−1)+ the ‘ndimensional opetopes’. Opetopes form a category, and presheaves on this category are called ‘opetopic sets’. A weak ncategory is defined as an opetopic set with certain properties, in a manner reminiscent of Street’s simplicial approach to weak ωcategories. In a similar manner, starting from an arbitrary operad O instead of I, we define ‘ncoherent Oalgebras’, which are n times categorified analogs of algebras of O. Examples include ‘monoidal ncategories’, ‘stable ncategories’, ‘virtual nfunctors ’ and ‘representable nprestacks’. We also describe how ncoherent Oalgebra objects may be defined in any (n + 1)coherent Oalgebra.
From Finite Sets to Feynman Diagrams
 Mathematics Unlimited  2001 And Beyond
, 2001
"... ‘Categorification ’ is the process of replacing equations by isomorphisms. We describe some of the ways a thoroughgoing emphasis on categorification can simplify and unify mathematics. We begin with elementary arithmetic, where the category of finite sets serves as a categorified version of the set ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
‘Categorification ’ is the process of replacing equations by isomorphisms. We describe some of the ways a thoroughgoing emphasis on categorification can simplify and unify mathematics. We begin with elementary arithmetic, where the category of finite sets serves as a categorified version of the set of natural numbers, with disjoint union and Cartesian product playing the role of addition and multiplication. We sketch how categorifying the integers leads naturally to the infinite loop space Ω ∞ S ∞ , and how categorifying the positive rationals leads naturally to a notion of the ‘homotopy cardinality ’ of a tame space. Then we show how categorifying formal power series leads to Joyal’s espèces des structures, or ‘structure types’. We also describe a useful generalization of structure types called ‘stuff types’. There is an inner product of stuff types that makes the category of stuff types into a categorified version of the Hilbert space of the quantized harmonic oscillator. We conclude by sketching how this idea gives a nice explanation of the combinatorics of Feynman diagrams. 1
Higherdimensional algebra VI: Lie 2algebras,
, 2004
"... The theory of Lie algebras can be categorified starting from a new notion of ‘2vector space’, which we define as an internal category in Vect. There is a 2category 2Vect having these 2vector spaces as objects, ‘linear functors’ as morphisms and ‘linear natural transformations ’ as 2morphisms. We ..."
Abstract

Cited by 44 (12 self)
 Add to MetaCart
The theory of Lie algebras can be categorified starting from a new notion of ‘2vector space’, which we define as an internal category in Vect. There is a 2category 2Vect having these 2vector spaces as objects, ‘linear functors’ as morphisms and ‘linear natural transformations ’ as 2morphisms. We define a ‘semistrict Lie 2algebra ’ to be a 2vector space L equipped with a skewsymmetric bilinear functor [·, ·]: L × L → L satisfying the Jacobi identity up to a completely antisymmetric trilinear natural transformation called the ‘Jacobiator’, which in turn must satisfy a certain law of its own. This law is closely related to the Zamolodchikov tetrahedron equation, and indeed we prove that any semistrict Lie 2algebra gives a solution of this equation, just as any Lie algebra gives a solution of the Yang–Baxter equation. We construct a 2category of semistrict Lie 2algebras and prove that it is 2equivalent to the 2category of 2term L∞algebras in the sense of Stasheff. We also study strict and skeletal Lie 2algebras, obtaining the former from strict Lie 2groups and using the latter to classify Lie 2algebras in terms of 3rd cohomology classes in Lie algebra cohomology. This classification allows us to construct for any finitedimensional Lie algebra g a canonical 1parameter family of Lie 2algebras g � which reduces to g at � = 0. These are closely related to the 2groups G � constructed in a companion paper.
Higherdimensional algebra IV: 2Tangles
"... Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we p ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we prove that this 2category is the ‘free semistrict braided monoidal 2category with duals on one unframed selfdual object’. By this universal property, any unframed selfdual object in a braided monoidal 2category with duals determines an invariant of 2tangles in 4 dimensions. 1
Galois theory for braided tensor categories and the modular closure
 Adv. Math
, 2000
"... Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC with positive ∗operation.) A Galois correspondence is established between intermediate categories sitting between C and C ⋊S and closed subgroups of the Galois group Gal(C⋊S/C) = AutC(C⋊S) of C, the latter being isomorphic to the compact group associated to S by the duality theorem of Doplicher and Roberts. Denoting by D ⊂ C the full subcategory of degenerate objects, i.e. objects which have trivial monodromy with all objects of C, the braiding of C extends to a braiding of C⋊S iff S ⊂ D. Under this condition C⋊S has no nontrivial degenerate objects iff S = D. If the original category C is rational (i.e. has only finitely many isomorphism classes of irreducible objects) then the same holds for the new one. The category C ≡ C ⋊ D is called the modular closure of C since in the rational case it is modular, i.e. gives rise to a unitary representation of the modular group SL(2, Z). (In passing we prove that every braided tensor ∗category with conjugates automatically is a ribbon category, i.e. has a twist.) If all simple objects of S have dimension one the structure of the category C ⋊ S can be clarified quite explicitly in terms of group cohomology. 1
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
An introduction to ncategories
 In 7th Conference on Category Theory and Computer Science
, 1997
"... ..."
Finite groups, spherical 2categories, and 4manifold invariants. arXiv:math.QA/9903003
"... In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], althou ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], although it requires a slight generalization of that construction. We show that the statesum invariants of Birmingham and Rakowski [11, 12, 13], who studied DijkgraafWitten type invariants in dimension 4, are special examples of the general construction that we present in this paper. They showed that their invariants are nontrivial by some explicit computations, so our construction includes interesting examples already. Finally, we indicate how our construction is related to homotopy 3types. This connection suggests that there are many more interesting examples of our construction to be found in the work on homotopy 3types, such as [15], for example. 1 1
2Categorical Poincaré representations and state sum applications, available as math.QA/0306440
"... This is intended as a selfcontained introduction to the representation theory developed in order to create a Poincaré 2category state sum model for Quantum Gravity in 4 dimensions. We review the structure of a new representation 2category appropriate to Lie 2group symmetries and discuss its appl ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
This is intended as a selfcontained introduction to the representation theory developed in order to create a Poincaré 2category state sum model for Quantum Gravity in 4 dimensions. We review the structure of a new representation 2category appropriate to Lie 2group symmetries and discuss its application to the problem of finding a state sum model for Quantum Gravity. There is a remarkable richness in its details, reflecting some desirable characteristics of physical 4dimensionality. We begin with a review of the method of orbits in Geometric Quantization, as an aid to the intuition that the geometric picture unfolded here may be seen as a categorification of this process. 1