Results 1  10
of
180
Prediction With Gaussian Processes: From Linear Regression To Linear Prediction And Beyond
 Learning and Inference in Graphical Models
, 1997
"... The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. Th ..."
Abstract

Cited by 195 (4 self)
 Add to MetaCart
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems. PREDICTION WITH GAUSSIAN PROCESSES: FROM LINEAR REGRESSION TO LINEAR PREDICTION AND BEYOND 2 1 Introduction In the last decade neural networks have been used to tackle regression and classification problems, with some notable successes. It has also been widely recognized that they form a part of a wide variety of nonlinear statistical techniques that can be used for...
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as ..."
Abstract

Cited by 166 (3 self)
 Add to MetaCart
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of inputdependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...
Sparse online gaussian processes
 Neural Computation
"... Minor corrections included a a The authors acknowledge reader feedbacks We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of ..."
Abstract

Cited by 128 (6 self)
 Add to MetaCart
Minor corrections included a a The authors acknowledge reader feedbacks We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments. Sparse Online Gaussian Processes 2
Sparse Gaussian processes using pseudoinputs
 Advances in Neural Information Processing Systems 18
, 2006
"... We present a new Gaussian process (GP) regression model whose covariance is parameterized by the the locations of M pseudoinput points, which we learn by a gradient based optimization. We take M ≪ N, where N is the number of real data points, and hence obtain a sparse regression method which has O( ..."
Abstract

Cited by 127 (9 self)
 Add to MetaCart
We present a new Gaussian process (GP) regression model whose covariance is parameterized by the the locations of M pseudoinput points, which we learn by a gradient based optimization. We take M ≪ N, where N is the number of real data points, and hence obtain a sparse regression method which has O(M 2 N) training cost and O(M 2) prediction cost per test case. We also find hyperparameters of the covariance function in the same joint optimization. The method can be viewed as a Bayesian regression model with particular input dependent noise. The method turns out to be closely related to several other sparse GP approaches, and we discuss the relation in detail. We finally demonstrate its performance on some large data sets, and make a direct comparison to other sparse GP methods. We show that our method can match full GP performance with small M, i.e. very sparse solutions, and it significantly outperforms other approaches in this regime. 1
Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification
, 1997
"... Abstract. Gaussian processes are a natural way of defining prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be ..."
Abstract

Cited by 124 (1 self)
 Add to MetaCart
Abstract. Gaussian processes are a natural way of defining prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be implemented using matrix computations that are feasible for datasets of up to about a thousand cases. Hyperparameters that define the covariance function of the Gaussian process can be sampled using Markov chain methods. Regression models where the noise has a t distribution and logistic or probit models for classification applications can be implemented by sampling as well for latent values underlying the observations. Software is now available that implements these methods using covariance functions with hierarchical parameterizations. Models defined in this way can discover highlevel properties of the data, such as which inputs are relevant to predicting the response. 1
Incremental Online Learning in High Dimensions
 Neural Computation
, 2005
"... Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally e ..."
Abstract

Cited by 107 (15 self)
 Add to MetaCart
Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally e#cient and numerically robust, each local model performs the regression analysis with a small number of univariate regressions in selected directions in input space in the spirit of partial least squares regression. We discuss when and how local learning techniques can successfully work in high dimensional spaces and review the various techniques for local dimensionality reduction before finally deriving the LWPR algorithm. The properties of LWPR are that it i) learns rapidly with second order learning methods based on incremental training, ii) uses statistically sound stochastic leaveoneout cross validation for learning without the need to memorize training data, iii) adjusts its weighting kernels based only on local information in order to minimize the danger of negative interference of incremental learning, iv) has a computational complexity that is linear in the number of inputs, and v) can deal with a large number of  possibly redundant  inputs, as shown in various empirical evaluations with up to 90 dimensional data sets. For a probabilistic interpretation, predictive variance and confidence intervals are derived. To our knowledge, LWPR is the first truly incremental spatially localized learning method that can successfully and e#ciently operate in very high dimensional spaces.
A unifying view of sparse approximate Gaussian process regression
 Journal of Machine Learning Research
, 2005
"... We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existin ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.
Learning the Kernel with Hyperkernels
, 2003
"... This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical es ..."
Abstract

Cited by 79 (2 self)
 Add to MetaCart
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem very much akin to the problem of minimizing a regularized risk functional.
Tutorial on Variational Approximation Methods
 In Advanced Mean Field Methods: Theory and Practice
, 2000
"... We provide an introduction to the theory and use of variational methods for inference and estimation in the context of graphical models. Variational methods become useful as ecient approximate methods when the structure of the graph model no longer admits feasible exact probabilistic calculations. T ..."
Abstract

Cited by 74 (1 self)
 Add to MetaCart
We provide an introduction to the theory and use of variational methods for inference and estimation in the context of graphical models. Variational methods become useful as ecient approximate methods when the structure of the graph model no longer admits feasible exact probabilistic calculations. The emphasis of this tutorial is on illustrating how inference and estimation problems can be transformed into variational form along with describing the resulting approximation algorithms and their properties insofar as these are currently known. 1 Introduction The term variational methods refers to a large collection of optimization techniques. The classical context for these methods involves nding the extremum of an integral depending on an unknown function and its derivatives. This classical de nition, however, and the accompanying calculus of variation no longer adequately characterizes modern variational methods. Modern variational approaches have become indispensable tools in...
A Bayesian Committee Machine
 NEURAL COMPUTATION
, 2000
"... The Bayesian committee machine (BCM) is a novel approach to combining estimators which were trained on different data sets. Although the BCM can be applied to the combination of any kind of estimators the main foci are Gaussian process regression and related systems such as regularization networks a ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
The Bayesian committee machine (BCM) is a novel approach to combining estimators which were trained on different data sets. Although the BCM can be applied to the combination of any kind of estimators the main foci are Gaussian process regression and related systems such as regularization networks and smoothing splines for which the degrees of freedom increase with the number of training data. Somewhat surprisingly, we nd that the performance of the BCM improves if several test points are queried at the same time and is optimal if the number of test points is at least as large as the degrees of freedom of the estimator. The BCM also provides a new solution for online learning with potential applications to data mining. We apply the BCM to systems with fixed basis functions and discuss its relationship to Gaussian process regression. Finally, we also show how the ideas behind the BCM can be applied in a nonBayesian setting to extend the input dependent combination of estimators.