Results 1  10
of
275
Comprehending Monads
 Mathematical Structures in Computer Science
, 1992
"... Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised to an arbit ..."
Abstract

Cited by 456 (13 self)
 Add to MetaCart
Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised to an arbitrary monad, and how the resulting programming feature can concisely express in a pure functional language some programs that manipulate state, handle exceptions, parse text, or invoke continuations. A new solution to the old problem of destructive array update is also presented. No knowledge of category theory is assumed.
Theorems for free!
 FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
, 1989
"... From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus. ..."
Abstract

Cited by 326 (6 self)
 Add to MetaCart
From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.
Programming with bananas, lenses, envelopes and barbed wire
 In FPCA
, 1991
"... We develop a calculus for lazy functional programming based on recursion operators associated with data type definitions. For these operators we derive various algebraic laws that are useful in deriving and manipulating programs. We shall show that all example Functions in Bird and Wadler's "Introdu ..."
Abstract

Cited by 299 (11 self)
 Add to MetaCart
We develop a calculus for lazy functional programming based on recursion operators associated with data type definitions. For these operators we derive various algebraic laws that are useful in deriving and manipulating programs. We shall show that all example Functions in Bird and Wadler's "Introduction to Functional Programming " can be expressed using these operators. 1
Compiling polymorphism using intensional type analysis
 In Symposium on Principles of Programming Languages
, 1995
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as ..."
Abstract

Cited by 260 (18 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as
The slam calculus: programming with secrecy and integrity
 In POPL ’98: Proceedings of the 25th ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 1998
"... The SLam calculus is a typed λcalculus that maintains security information as well as type information. The type system propagates security information for each object in four forms: the object’s creators and readers, and the object’s indirect creators and readers (i.e., those agents who, through f ..."
Abstract

Cited by 235 (1 self)
 Add to MetaCart
The SLam calculus is a typed λcalculus that maintains security information as well as type information. The type system propagates security information for each object in four forms: the object’s creators and readers, and the object’s indirect creators and readers (i.e., those agents who, through flowofcontrol or the actions of other agents, can influence or be influenced by the content of the object). We prove that the type system prevents security violations and give some examples of its power. 1
A Core Calculus of Dependency
 IN PROC. 26TH ACM SYMP. ON PRINCIPLES OF PROGRAMMING LANGUAGES (POPL
, 1999
"... Notions of program dependency arise in many settings: security, partial evaluation, program slicing, and calltracking. We argue that there is a central notion of dependency common to these settings that can be captured within a single calculus, the Dependency Core Calculus (DCC), a small extension ..."
Abstract

Cited by 228 (25 self)
 Add to MetaCart
Notions of program dependency arise in many settings: security, partial evaluation, program slicing, and calltracking. We argue that there is a central notion of dependency common to these settings that can be captured within a single calculus, the Dependency Core Calculus (DCC), a small extension of Moggi's computational lambda calculus. To establish this thesis, we translate typed calculi for secure information flow, bindingtime analysis, slicing, and calltracking into DCC. The translations help clarify aspects of the source calculi. We also define a semantic model for DCC and use it to give simple proofs of noninterference results for each case.
Type systems
 The Computer Science and Engineering Handbook
, 1997
"... This paper presents an overview of the programming language Modula3, and a more detailed description of its type system. 1 ..."
Abstract

Cited by 200 (1 self)
 Add to MetaCart
This paper presents an overview of the programming language Modula3, and a more detailed description of its type system. 1
Separation and Information Hiding
, 2004
"... We investigate proof rules for information hiding, using the recent formalism of separation logic. In essence, we use the separating conjunction to partition the internal resources of a module from those accessed by the module's clients. The use of a logical connective gives rise to a form of dynami ..."
Abstract

Cited by 165 (22 self)
 Add to MetaCart
We investigate proof rules for information hiding, using the recent formalism of separation logic. In essence, we use the separating conjunction to partition the internal resources of a module from those accessed by the module's clients. The use of a logical connective gives rise to a form of dynamic partitioning, where we track the transfer of ownership of portions of heap storage between program components. It also enables us to enforce separation in the presence of mutable data structures with embedded addresses that may be aliased.
A Linearly Typed Assembly Language
 In Workshop on Types in Compilation
"... Today's typesafe lowlevel languages rely on garbage collection to recycle heapallocated objects safely. We present LTAL, a safe, lowlevel, yet simple language that "stands on its own": it guarantees safe execution within a fixed memory space, without relying on external runtime support. We demo ..."
Abstract

Cited by 145 (35 self)
 Add to MetaCart
Today's typesafe lowlevel languages rely on garbage collection to recycle heapallocated objects safely. We present LTAL, a safe, lowlevel, yet simple language that "stands on its own": it guarantees safe execution within a fixed memory space, without relying on external runtime support. We demonstrate the expressiveness of LTAL by giving a typepreserving compiler for the functional core of ML. But this independence comes at a steep price: LTAL's type system imposes a draconian discipline of linearity that ensures that memory can be reused safely, but prohibits any useful kind of sharing. We present the results of experiments with a prototype LTAL system that show just how high the price of linearity can be.
Linear Types Can Change the World!
 PROGRAMMING CONCEPTS AND METHODS
, 1990
"... The linear logic of J.Y. Girard suggests a new type system for functional languages, one which supports operations that "change the world". Values belonging to a linear type must be used exactly once: like the world, they cannot be duplicated or destroyed. Such values require no reference counti ..."
Abstract

Cited by 134 (9 self)
 Add to MetaCart
The linear logic of J.Y. Girard suggests a new type system for functional languages, one which supports operations that "change the world". Values belonging to a linear type must be used exactly once: like the world, they cannot be duplicated or destroyed. Such values require no reference counting or garbage collection, and safely admit destructive array update. Linear types extend Schmidt's notion of single threading; provide an alternative to Hudak and Bloss' update analysis; and offer a practical complement to Lafont and Holmström's elegant linear languages.