Results 1  10
of
455
Universally composable security: A new paradigm for cryptographic protocols
, 2013
"... We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved ..."
Abstract

Cited by 815 (42 self)
 Add to MetaCart
We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved under a general protocol composition operation, called universal composition. The proposed framework with its securitypreserving composition operation allows for modular design and analysis of complex cryptographic protocols from relatively simple building blocks. Moreover, within this framework, protocols are guaranteed to maintain their security in any context, even in the presence of an unbounded number of arbitrary protocol instances that run concurrently in an adversarially controlled manner. This is a useful guarantee, that allows arguing about the security of cryptographic protocols in complex and unpredictable environments such as modern communication networks.
Privacy Preserving Data Mining
 JOURNAL OF CRYPTOLOGY
, 2000
"... In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated b ..."
Abstract

Cited by 487 (8 self)
 Add to MetaCart
(Show Context)
In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated by the need to both protect privileged information and enable its use for research or other purposes. The
Analysis of keyexchange protocols and their use for building secure channels
, 2001
"... Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with ..."
Abstract

Cited by 315 (21 self)
 Add to MetaCart
(Show Context)
Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with symmetric encryption and authentication functions to provide provably secure communication channels (as defined here); and (ii) the definition allows for simple modular proofs of security: one can design and prove security of keyexchange protocols in an idealized model where the communication links are perfectly authenticated, and then translate them using general tools to obtain security in the realistic setting of adversarycontrolled links. We exemplify the usability of our results by applying them to obtain the proof of two classes of keyexchange protocols, DiffieHellman and keytransport, authenticated via symmetric or asymmetric techniques. 1
An efficient system for nontransferable anonymous credentials with optional anonymity revocation
, 2001
"... Abstract. A credential system is a system in which users can obtain credentials from organizations and demonstrate possession of these credentials. Such a system is anonymous when transactions carried out by the same user cannot be linked. An anonymous credential system is of significant practical r ..."
Abstract

Cited by 293 (12 self)
 Add to MetaCart
(Show Context)
Abstract. A credential system is a system in which users can obtain credentials from organizations and demonstrate possession of these credentials. Such a system is anonymous when transactions carried out by the same user cannot be linked. An anonymous credential system is of significant practical relevance because it is the best means of providing privacy for users. In this paper we propose a practical anonymous credential system that is based on the strong RSA assumption and the decisional DiffieHellman assumption modulo a safe prime product and is considerably superior to existing ones: (1) We give the first practical solution that allows a user to unlinkably demonstrate possession of a credential as many times as necessary without involving the issuing organization. (2) To prevent misuse of anonymity, our scheme is the first to offer optional anonymity revocation for particular transactions. (3) Our scheme offers separability: all organizations can choose their cryptographic keys independently of each other. Moreover, we suggest more effective means of preventing users from sharing their credentials, by introducing allornothing sharing: a user who allows a friend to use one of her credentials once, gives him the ability to use all of her credentials, i.e., taking over her identity. This is implemented by a new primitive, called circular encryption, which is of independent interest, and can be realized from any semantically secure cryptosystem in the random oracle model.
Dynamic accumulators and application to efficient revocation of anonymous credentials
 http://eprint.iacr.org/2001, 2001. Jan Camenisch and Anna Lysyanskaya
"... Abstract. We introduce the notion of a dynamic accumulator. Anaccumulator scheme allows one to hash a large set of inputs into one short value, such that there is a short proof that a given input was incorporated into this value. A dynamic accumulator allows one to dynamically add and delete a value ..."
Abstract

Cited by 207 (11 self)
 Add to MetaCart
Abstract. We introduce the notion of a dynamic accumulator. Anaccumulator scheme allows one to hash a large set of inputs into one short value, such that there is a short proof that a given input was incorporated into this value. A dynamic accumulator allows one to dynamically add and delete a value, such that the cost of an add or delete is independent of the number of accumulated values. We provide a construction of a dynamic accumulator and an efficient zeroknowledge proof of knowledge of an accumulated value. We prove their security under the strong RSA assumption. We then show that our construction of dynamic accumulators enables efficient revocation of anonymous credentials, and membership revocation for recent group signature and identity escrow schemes.
Direct Anonymous Attestation
, 2004
"... This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted by the Trusted Computing Group as the method for remote authentication of a hardware module, called trusted platform module (TPM), while preserving the privacy of the user of the platform that contains the ..."
Abstract

Cited by 198 (20 self)
 Add to MetaCart
This paper describes the direct anonymous attestation scheme (DAA). This scheme was adopted by the Trusted Computing Group as the method for remote authentication of a hardware module, called trusted platform module (TPM), while preserving the privacy of the user of the platform that contains the module. Direct anonymous attestation can be seen as a group signature without the feature that a signature can be opened, i.e., the anonymity is not revocable. Moreover, DAA allows for pseudonyms, i.e., for each signature a user (in agreement with the recipient of the signature) can decide whether or not the signature should be linkable to another signature. DAA furthermore allows for detection of "known" keys: if the DAA secret keys are extracted from a TPM and published, a verifier can detect that a signature was produced using these secret keys. The scheme is provably secure in the random oracle model under the strong RSA and the decisional Di#eHellman assumption.
Universally Composable Commitments
, 2001
"... We propose a new security measure for commitment protocols, called Universally Composable ..."
Abstract

Cited by 177 (10 self)
 Add to MetaCart
We propose a new security measure for commitment protocols, called Universally Composable
A Model for Asynchronous Reactive Systems and its Application to Secure Message Transmission
, 2000
"... We present the first rigorous model for secure reactive systems in asynchronous networks with a sound cryptographic semantics, supporting abstract specifications and the composition of secure systems. This enables modular proofs of security, which is essential in bridging the gap between the rigorou ..."
Abstract

Cited by 173 (18 self)
 Add to MetaCart
We present the first rigorous model for secure reactive systems in asynchronous networks with a sound cryptographic semantics, supporting abstract specifications and the composition of secure systems. This enables modular proofs of security, which is essential in bridging the gap between the rigorous proof techniques of cryptography and toolsupported formal proof techniques. The model follows the general simulatability approach of modern cryptography. A variety of network structures and trust models can be described, such as static and adaptive adversaries. As an example of our specification methodology we provide the first abstract and complete specification for Secure Message Transmission, improving on recent results by Lynch, and verify one concrete implementation. Our proof is based on a general theorem on the security of encryption in a reactive multiuser setting, generalizing a recent result by Bellare et al.
Multiparty Computation from Threshold Homomorphic Encryption
, 2001
"... Abstract. We introduce a new approach to multiparty computation (MPC) basing it on homomorphic threshold cryptosystems. We show that given keys for any sufficiently efficient system of this type, general MPC protocols for n parties can be devised which are secure against an active adversary that co ..."
Abstract

Cited by 157 (14 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a new approach to multiparty computation (MPC) basing it on homomorphic threshold cryptosystems. We show that given keys for any sufficiently efficient system of this type, general MPC protocols for n parties can be devised which are secure against an active adversary that corrupts any minority of the parties. The total number of bits broadcast is O(nkC), where k is the security parameter and C  is the size of a (Boolean) circuit computing the function to be securely evaluated. An earlier proposal by Franklin and Haber with the same complexity was only secure for passive adversaries, while all earlier protocols with active security had complexity at least quadratic in n. We give two examples of threshold cryptosystems that can support our construction and lead to the claimed complexities. 1
Universally Composable TwoParty and MultiParty Secure Computation
, 2002
"... We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many pa ..."
Abstract

Cited by 156 (36 self)
 Add to MetaCart
(Show Context)
We show how to securely realize any twoparty and multiparty functionality in a universally composable way, regardless of the number of corrupted participants. That is, we consider an asynchronous multiparty network with open communication and an adversary that can adaptively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the parties (with pairs of parties being a special case) to securely realize any desired functionality of their local inputs, and be guaranteed that security is preserved regardless of the activity in the rest of the network. This implies that security is preserved under concurrent composition of an unbounded number of protocol executions, it implies nonmalleability with respect to arbitrary protocols, and more. Our constructions are in the common reference string model and rely on standard intractability assumptions.