Results 11  20
of
394
Dynamic and efficient key management for access hierarchies
 In Proceedings of the ACM Conference on Computer and Communications Security
, 2005
"... Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy ..."
Abstract

Cited by 117 (8 self)
 Add to MetaCart
Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy. The problem of key management for such hierarchies then consists of assigning a key to each class in the hierarchy so that keys for descendant classes can be obtained via efficient key derivation. We propose a solution to this problem with the following properties: (1) the space complexity of the public information is the same as that of storing the hierarchy; (2) the private information at a class consists of a single key associated with that class; (3) updates (i.e., revocations and additions) are handled locally in the hierarchy; (4) the scheme is provably secure against collusion; and (5) each node can derive the key of any of its descendant with a number of symmetrickey operations bounded by the length of the path between the nodes. Whereas many previous schemes had some of these properties, ours is the first that satisfies all of them. The security of our scheme is based on pseudorandom functions, without reliance on the Random Oracle Model. 18 Portions of this work were supported by Grants IIS0325345 and CNS06274488 from the
Nearest Common Ancestors: A survey and a new distributed algorithm
, 2002
"... Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete ba ..."
Abstract

Cited by 90 (12 self)
 Add to MetaCart
(Show Context)
Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete balanced binary trees is straightforward. Furthermore, for complete balanced binary trees we can easily solve the problem in a distributed way by labeling the nodes of the tree such that from the labels of two nodes alone one can compute the label of their nearest common ancestor. Whether it is possible to distribute the data structure into short labels associated with the nodes is important for several applications such as routing. Therefore, related labeling problems have received a lot of attention recently.
Ambivalent data structures for dynamic 2edgeconnectivity and k smallest spanning trees
 SIAM Journal of Computing
, 1997
"... ..."
(Show Context)
Lewenstein M: Dictionary matching and indexing with errors and don’t cares
 Proceedings of the thirtysixth annual ACM symposium on Theory of computing 2004, 91100, ACM
"... ..."
(Show Context)
StraightLine Drawing Algorithms for Hierarchical Graphs and Clustered Graphs
 Algorithmica
, 1999
"... Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualizatio ..."
Abstract

Cited by 71 (12 self)
 Add to MetaCart
(Show Context)
Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualization, and VLSI design. Drawing algorithms for hierarchical graphs have been well investigated. However, the problem of straightline representation has not been solved completely. In this paper, we answer the question: does every planar hierarchical graph admit a planar straightline hierarchical drawing? We present an algorithm that constructs such drawings in linear time. Also, we answer a basic question for clustered graphs, that is, does every planar clustered graph admit a planar straightline drawing with clusters drawn as convex polygons? We provide a method for such drawings based on our algorithm for hierarchical graphs.
From Gene Trees to Species Trees
, 1998
"... This paper studies various algorithmic issues in reconstructing a species tree from gene trees under the duplication and the mutation cost model. This is a fundamental problem in computational molecular biology. Our main results are as follows. 1. A linear time algorithm is presented for computing a ..."
Abstract

Cited by 71 (6 self)
 Add to MetaCart
(Show Context)
This paper studies various algorithmic issues in reconstructing a species tree from gene trees under the duplication and the mutation cost model. This is a fundamental problem in computational molecular biology. Our main results are as follows. 1. A linear time algorithm is presented for computing all the losses in duplications associated with the least common ancestor mapping from a gene tree to a species tree. This answers a problem raised recently by Eulenstein et al. (1998). 2. The complexity of finding an optimal species tree from gene trees is studied. The problem is proved to be NPhard for the duplication cost and for the mutation cost. Further, the concept of reconciled trees was introduced by Goodman et al. and formalized by Page for visualizing the relationship between gene and species trees. We show that constructing an optimal reconciled tree for gene trees is also NPhard. Finally, we consider a general reconstruction problem and show it to be NPhard even for the wellkn...
Approximation Algorithms for Finding Highly Connected Subgraphs
, 1996
"... Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
Contents 1 Introduction 2 1.1 Outline of Chapter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2 EdgeConnectivity Problems 3 2.1 Weighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Unweighted EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.1 2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.2.2 EdgeConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 3 VertexConnectivity Problems 11 3.1 Weighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11 3.2 Unweighted VertexConnectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 3.2.1 2 VertexConnectivity : : : : : : : : : : : : : : : : :
Faster Algorithms for String Matching with k Mismatches
 J. OF ALGORITHMS
, 2000
"... The string matching with mismatches problem is that of finding the number of mismatches between a pattern P of length m and every length m substring of the text T . Currently, the fastest algorithms for this problem are the following. The LandauVishkin algorithm finds all locations where the pat ..."
Abstract

Cited by 69 (15 self)
 Add to MetaCart
The string matching with mismatches problem is that of finding the number of mismatches between a pattern P of length m and every length m substring of the text T . Currently, the fastest algorithms for this problem are the following. The LandauVishkin algorithm finds all locations where the pattern has at most k errors (where k is part of the input) in time O(nk). The Abrahamson algorithm finds the number of mismatches at every location in time O(n p m log m). We present
Tree spanners
 SIAM J. Discrete Math
, 1995
"... A tree tspanner T of a graph G is a spanning tree in which the distance between every pair of vertices is at most t times their distance in G. This notion is motivated by applications in communication networks, distributed systems, and network design. This paper studies graph theoretic, algorithmic ..."
Abstract

Cited by 68 (1 self)
 Add to MetaCart
(Show Context)
A tree tspanner T of a graph G is a spanning tree in which the distance between every pair of vertices is at most t times their distance in G. This notion is motivated by applications in communication networks, distributed systems, and network design. This paper studies graph theoretic, algorithmic and complexity issues about tree spanners. It is shown that a tree 1spanner, if it exists, in a weighted graph with m edges and n vertices is a minimum spanning tree and can be found in O(m log β(m, n)) time, where β(m, n) = min{i  log (i) n ≤ m/n}. On the other hand, for any fixed t> 1, the problem of determining the existence of a tree tspanner in a weighted graph is proven to be NPcomplete. For unweighted graphs, it is shown that constructing a tree 2spanner takes linear time, whereas determining the existence of a tree tspanner is NPcomplete for any fixed t ≥ 4. A theorem which captures the structure of tree 2spanners is presented for unweighted graphs. For digraphs, an O((m+n)α(m, n)) algorithm is provided for