Results 11  20
of
653
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 373 (48 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization
, 1997
"... The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight into the heuristics used in the ..."
Abstract

Cited by 339 (1 self)
 Add to MetaCart
The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight into the heuristics used in the Rocchio algorithm, particularly the word weighting scheme and the similarity metric. It also suggests improvements which lead to a probabilistic variant of the Rocchio classifier. The Rocchio classifier, its probabilistic variant, and a naive Bayes classifier are compared on six text categorization tasks. The results show that the probabilistic algorithms are preferable to the heuristic Rocchio classifier not only because they are more wellfounded, but also because they achieve better performance.
Support vector machine active learning for image retrieval
, 2001
"... Relevance feedback is often a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or query concept by asking the user whether certain proposed images ..."
Abstract

Cited by 331 (27 self)
 Add to MetaCart
Relevance feedback is often a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or query concept by asking the user whether certain proposed images are relevant or not. For a relevance feedback algorithm to be effective, it must grasp a user’s query concept accurately and quickly, while also only asking the user to label a small number of images. We propose the use of a support vector machine active learning algorithm for conducting effective relevance feedback for image retrieval. The algorithm selects the most informative images to query a user and quickly learns a boundary that separates the images that satisfy the user’s query concept from the rest of the dataset. Experimental results show that our algorithm achieves significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of relevance feedback.
How to Use Expert Advice
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1997
"... We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the ..."
Abstract

Cited by 317 (66 self)
 Add to MetaCart
We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the algorithm by the difference between the expected number of mistakes it makes on the bit sequence and the expected number of mistakes made by the best expert on this sequence, where the expectation is taken with respect to the randomization in the predictions. We show that the minimum achievable difference is on the order of the square root of the number of mistakes of the best expert, and we give efficient algorithms that achieve this. Our upper and lower bounds have matching leading constants in most cases. We then show howthis leads to certain kinds of pattern recognition/learning algorithms with performance bounds that improve on the best results currently known in this context. We also compare our analysis to the case in which log loss is used instead of the expected number of mistakes.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 286 (3 self)
 Add to MetaCart
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a timeconsuming numerical QP optimization as an inner loop. The amount of memory required for SMO is linear in the training set size, which allows SMO to handle very large training sets. Because matrix computation is avoided, SMO scales somewhere between linear and quadratic in the training set size for various test problems, while the standard chunking SVM algorithm scales somewhere between linear and cubic in the training set size. SMO’s computation time is dominated by SVM evaluation, hence SMO is fastest for linear SVMs and sparse data sets. On realworld sparse data sets, SMO can be more than 1000 times faster than the chunking algorithm. 1.
Bagging, Boosting, and C4.5
 In Proceedings of the Thirteenth National Conference on Artificial Intelligence
, 1996
"... Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classifier learning systems. Both form a set of classifiers that are combined by voting, bagging by generating replicated bootstrap samples of the data, and boosting by adjusting the weight ..."
Abstract

Cited by 274 (1 self)
 Add to MetaCart
Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classifier learning systems. Both form a set of classifiers that are combined by voting, bagging by generating replicated bootstrap samples of the data, and boosting by adjusting the weights of training instances. This paper reports results of applying both techniques to a system that learns decision trees and testing on a representative collection of datasets. While both approaches substantially improve predictive accuracy, boosting shows the greater benefit. On the other hand, boosting also produces severe degradation on some datasets. A small change to the way that boosting combines the votes of learned classifiers reduces this downside and also leads to slightly better results on most of the datasets considered. Introduction Designers of empirical machine learning systems are concerned with such issues as the computational cost of the learning method and the accuracy and ...
Regularization networks and support vector machines
 Advances in Computational Mathematics
, 2000
"... Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization a ..."
Abstract

Cited by 266 (33 self)
 Add to MetaCart
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization and Support Vector Machines. We review both formulations in the context of Vapnik’s theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics. The emphasis is on regression: classification is treated as a special case.
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 249 (12 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Support vector machines for spam categorization
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1999
"... We study the use of support vector machines (SVM’s) in classifying email as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features ..."
Abstract

Cited by 238 (3 self)
 Add to MetaCart
We study the use of support vector machines (SVM’s) in classifying email as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM’s performed best when using binary features. For both data sets, boosting trees and SVM’s had acceptable test performance in terms of accuracy and speed. However, SVM’s had significantly less training time.