Results 1  10
of
65
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 523 (18 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. The concepts and methods described are quite general and can be applied to many other problems. Regularising constants are set by examining their posterior probability distribution. Alternative regularisers (priors) and alternative basis sets are objectively compared by evaluating the evidence for them. `Occam's razor' is automatically embodied by this framework. The way in which Bayes infers the values of regularising constants and noise levels has an elegant interpretation in terms of the effective number of parameters determined by the data set. This framework is due to Gull and Skilling. 1 Data modelling and Occam's razor In science, a central task is to develop and compare models to a...
A Practical Bayesian Framework for Backprop Networks
 Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract

Cited by 400 (20 self)
 Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
A hierarchical dirichlet language model
 Natural Language Engineering
, 1994
"... We discuss a hierarchical probabilistic model whose predictions are similar to those of the popular language modelling procedure known as 'smoothing'. A number of interesting differences from smoothing emerge. The insights gained from a probabilistic view of this problem point towards new directions ..."
Abstract

Cited by 80 (3 self)
 Add to MetaCart
We discuss a hierarchical probabilistic model whose predictions are similar to those of the popular language modelling procedure known as 'smoothing'. A number of interesting differences from smoothing emerge. The insights gained from a probabilistic view of this problem point towards new directions for language modelling. The ideas of this paper are also applicable to other problems such as the modelling of triphomes in speech, and DNA and protein sequences in molecular biology. The new algorithm is compared with smoothing on a two million word corpus. The methods prove to be about equally accurate, with the hierarchical model using fewer computational resources. 1
Comparison of Approximate Methods for Handling Hyperparameters
 NEURAL COMPUTATION
"... I examine two approximate methods for computational implementation of Bayesian hierarchical models, that is, models which include unknown hyperparameters such as regularization constants and noise levels. In the 'evidence framework' the model parameters are integrated over, and the resulting evid ..."
Abstract

Cited by 67 (1 self)
 Add to MetaCart
I examine two approximate methods for computational implementation of Bayesian hierarchical models, that is, models which include unknown hyperparameters such as regularization constants and noise levels. In the 'evidence framework' the model parameters are integrated over, and the resulting evidence is maximized over the hyperparameters. The optimized
Bayesian and Regularization Methods for Hyperparameter Estimation in Image Restoration
 IEEE Trans. Image Processing
, 1999
"... In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We ..."
Abstract

Cited by 65 (26 self)
 Add to MetaCart
In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.
Bayesian Methods for Mixtures of Experts
 In
, 1996
"... We present a Bayesian framework for inferring the parameters of a mixture of experts model based on ensemble learning by variational free energy minimisation. The Bayesian approach avoids the overfitting and noise level underestimation problems of traditional maximum likelihood inference. We demon ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
We present a Bayesian framework for inferring the parameters of a mixture of experts model based on ensemble learning by variational free energy minimisation. The Bayesian approach avoids the overfitting and noise level underestimation problems of traditional maximum likelihood inference. We demonstrate these methods on artificial problems and sunspot time series prediction. INTRODUCTION The task of estimating the parameters of adaptive models such as artificial neural networks using Maximum Likelihood (ML) is well documented eg. Geman, Bienenstock
From Laplace To Supernova Sn 1987a: Bayesian Inference In Astrophysics
, 1990
"... . The Bayesian approach to probability theory is presented as an alternative to the currently used longrun relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions ..."
Abstract

Cited by 52 (2 self)
 Add to MetaCart
. The Bayesian approach to probability theory is presented as an alternative to the currently used longrun relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions to wellposed statistical problems, and is historically the original approach to statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a firm logical and mathematical foundation as the correct mathematical language for quantifying uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined and illustrated by application to a simple problem based on the gaussian distribution. As further illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems are outlined: the measurement of wea...
The Relationship between PAC, the Statistical Physics framework, the Bayesian framework, and the VC framework
"... This paper discusses the intimate relationships between the supervised learning frameworks mentioned in the title. In particular, it shows how all those frameworks can be viewed as particular instances of a single overarching formalism. In doing this many commonly misunderstood aspects of those fram ..."
Abstract

Cited by 40 (7 self)
 Add to MetaCart
This paper discusses the intimate relationships between the supervised learning frameworks mentioned in the title. In particular, it shows how all those frameworks can be viewed as particular instances of a single overarching formalism. In doing this many commonly misunderstood aspects of those frameworks are explored. In addition the strengths and weaknesses of those frameworks are compared, and some novel frameworks are suggested (resulting, for example, in a "correction" to the familiar biasplusvariance formula).
Exploiting the generic viewpoint assumption
 IJCV
, 1996
"... The ¨generic viewpointässumption states that an observer is not in a special position relative to the scene. It is commonly used to disqualify scene interpretations that assume special viewpoints, following a binary decision that the viewpoint was either generic or accidental. In this paper, we appl ..."
Abstract

Cited by 22 (1 self)
 Add to MetaCart
The ¨generic viewpointässumption states that an observer is not in a special position relative to the scene. It is commonly used to disqualify scene interpretations that assume special viewpoints, following a binary decision that the viewpoint was either generic or accidental. In this paper, we apply Bayesian statistics to quantify the probability of a view, and so derive a useful tool to estimate scene parameters. This approach may increase the scope and accuracy of scene estimates. It applies to a range of vision problems. We show shape from shading examples, where we rank shapes or reflectance functions in cases where these are otherwise unknown. The rankings agree with the perceived values.
A Bayesian Framework for Concept Learning
 DEPARTMENT OF ARTIFICIAL INTELLIGENCE, EDINBURGH UNIVERSITY
, 1999
"... Human concept learning presents a version of the classic problem of induction, which is made particularly difficult by the combination of two requirements: the need to learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts and the need to be able to generalize concepts reaso ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
Human concept learning presents a version of the classic problem of induction, which is made particularly difficult by the combination of two requirements: the need to learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts and the need to be able to generalize concepts reasonably from only a few positive examples. I begin this thesis by considering a simple number concept game as a concrete illustration of this ability. On this task, human learners can with reasonable confidence lock in on one out of a billion billion billion logically possible concepts, after seeing only four positive examples of the concept, and can generalize informatively after seeing just a single example. Neither of the two classic approaches to inductive inference  hypothesis testing in a constrained space of possible rules and computing similarity to the observed examples  can provide a complete picture of how people generalize concepts in even this simple setting. This thesis prop...