Results 1  10
of
76
Comparing community structure identification
 Journal of Statistical Mechanics: Theory and Experiment
, 2005
"... ..."
Computing communities in large networks using random walks
 J. of Graph Alg. and App. bf
, 2004
"... Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advan ..."
Abstract

Cited by 94 (2 self)
 Add to MetaCart
Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advantages: it captures well the community structure in a network, it can be computed efficiently, and it can be used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such an algorithm, called Walktrap, which runs in time O(mn 2) and space O(n 2) in the worst case, and in time O(n 2 log n) and space O(n 2) in most realworld cases (n and m are respectively the number of vertices and edges in the input graph). Extensive comparison tests show that our algorithm surpasses previously proposed ones concerning the quality of the obtained community structures and that it stands among the best ones concerning the running time.
Characterization of complex networks: A survey of measurements
 Advances in Physics
"... Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of mea ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics and function of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements organized into classes. Special attention is given to relating complex network analysis with the areas of pattern recognition and feature selection, as well as on surveying some concepts and measurements from traditional graph theory which are potentially useful for complex network research. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the
On Modularity Clustering
, 2008
"... Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings wit ..."
Abstract

Cited by 67 (12 self)
 Add to MetaCart
Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.
A scalable distributed parallel breadthfirst search algorithm on bluegene/l
 In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing
, 2005
"... Many emerging largescale data science applications require searching large graphs distributed across multiple memories and processors. This paper presents a distributed breadthfirst search (BFS) scheme that scales for random graphs with up to three billion vertices and 30 billion edges. Scalability ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
Many emerging largescale data science applications require searching large graphs distributed across multiple memories and processors. This paper presents a distributed breadthfirst search (BFS) scheme that scales for random graphs with up to three billion vertices and 30 billion edges. Scalability was tested on IBM BlueGene/L with 32,768 nodes at the Lawrence Livermore National Laboratory. Scalability was obtained through a series of optimizations, in particular, those that ensure scalable use of memory. We use 2D (edge) partitioning of the graph instead of conventional 1D (vertex) partitioning to reduce communication overhead. For Poisson random graphs, we show that the expected size of the messages is scalable for both 2D and 1D partitionings. Finally, we have developed efficient collective communication functions for the 3D torus architecture of BlueGene/L that also take advantage of the structure in the problem. The performance and characteristics of the algorithm are measured and reported. 1
An Emulator Network for
 SIMD Machine Interconnection Networks, in: Proc. 6 th annual symposium on Computer architecture
, 1979
"... Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is colored according to community membership, which was determined using a leadingeigenvector spectral method followed by KernighanLin nodeswapping steps [64, 86, 107]. To determine community placement, we used the FruchtermanReingold graph visualization [45], a forcedirected layout method that is related to maximizing a quality function known as modularity [92]. To apply this method, we treated the communities as if they were themselves the nodes of a (significantly smaller) network with connections rescaled by intercommunity links. We then used the KamadaKawaii springembedding graph visualization algorithm [62] to place the nodes of each individual community (ignoring intercommunity links) and then to rotate and flip the communities for optimal placement (including intercommunity links). We gratefully acknowledge Amanda Traud for preparing this figure. COMMUNITIES IN NETWORKS
Multilevel algorithms for modularity clustering
"... been adapted to modularity clustering. Section 4 details the singlelevel and multilevel refinement heuristics, and Section 5.3 compares them experimentally. Because the effectiveness of (particularly multilevel) refinement may depend on the coarsening algorithm, Section 5.4 examines various combi ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
been adapted to modularity clustering. Section 4 details the singlelevel and multilevel refinement heuristics, and Section 5.3 compares them experimentally. Because the effectiveness of (particularly multilevel) refinement may depend on the coarsening algorithm, Section 5.4 examines various combinations of coarsening and refinement heuristics. Section 6 compares public implementations and benchmark results of modularity clustering heuristics, without a restriction to coarsening and refinement algorithms. While this is one of the most extensive comparisons in the literature, it is far from exhaustive, because implementations and sufficient experimental results have not been published for some proposed heurisarXiv:0812.4073v1
ModularityMaximizing Graph Communities via Mathematical Programming
"... In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality of a network partitioning into communities. Since then, various algorithms have been proposed for (approximately) maximizing the modularity of the partitioning determined. In this paper, we introduce the technique of rounding mathematical programs to the problem of modularity maximization, presenting two novel algorithms. More specifically, the algorithms round solutions to linear and vector programs. Importantly, the linear programing algorithm comes with an a posteriori approximation guarantee: by comparing the solution quality to the fractional solution of the linear program, a bound on the available “room for improvement ” can be obtained. The vector programming algorithm provides a similar bound for the best partition into two communities. We evaluate both algorithms using experiments on several standard test cases for network partitioning algorithms, and find that they perform comparably or better than past algorithms, while being more efficient than exhaustive techniques.
Extending the definition of modularity of directed graphs with overlapping communities
, 2009
"... ..."
On finding graph clusterings with maximum modularity
 IN PROCEEDINGS OF THE 33RD INTERNATIONAL WORKSHOP ON GRAPHTHEORETIC CONCEPTS IN COMPUTER SCIENCE. LECTURE NOTES IN COMPUTER SCIENCE
, 2007
"... Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings wi ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.