Results 1  10
of
74
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 143 (5 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
Improved Approximation Algorithms for Uniform Connectivity Problems
 J. Algorithms
"... The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. Th ..."
Abstract

Cited by 80 (3 self)
 Add to MetaCart
(Show Context)
The problem of finding minimum weight spanning subgraphs with a given connectivity requirement is considered. The problem is NPhard when the connectivity requirement is greater than one. Polynomial time approximation algorithms for various weighted and unweighted connectivity problems are given. The following results are presented: 1. For the unweighted kedgeconnectivity problem an approximation algorithm that achieves a performance ratio of 1.85 is described. This is the first polynomialtime algorithm that achieves a constant less than 2, for all k. 2. For the weighted kvertexconnectivity problem, a constant factor approximation algorithm is given assuming that the edgeweights satisfy the triangle inequality. This is the first constant factor approximation algorithm for this problem. 3. For the case of biconnectivity, with no assumptions about the weights of the edges, an algorithm that achieves a factor asymptotically approaching 2 is described. This matches the previous best...
Centerpiece subgraphs: Problem definition and fast solutions
 In KDD
, 2006
"... Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong t ..."
Abstract

Cited by 74 (22 self)
 Add to MetaCart
(Show Context)
Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong to. Isomorphic scenarios appear in law enforcement (find the mastermind criminal, connected to all current suspects), gene regulatory networks (find the protein that participates in pathways with all or most of the given Q proteins), viral marketing and many more. Connection subgraphs is an important first step, handling the case of Q=2 query nodes. Then, the connection subgraph algorithm finds the b intermediate nodes, that provide a good connection between the two original query nodes. Here we generalize the challenge in multiple dimensions: First, we allow more than two query nodes. Second, we allow a whole family of queries, ranging from ’OR ’ to ’AND’, with ’softAND ’ inbetween. Finally, we design and compare a fast approximation, and study the quality/speed tradeoff. We also present experiments on the DBLP dataset. The experiments confirm that our proposed method naturally deals with multisource queries and that the resulting subgraphs agree with our intuition. Wallclock timing results on the DBLP dataset show that our proposed approximation achieve good accuracy for about 6: 1 speedup. This material is based upon work supported by the
An Efficient Approximation Algorithm for the Survivable Network Design Problem
 IN PROCEEDINGS OF THE THIRD MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph ..."
Abstract

Cited by 58 (6 self)
 Add to MetaCart
The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph
Fast DirectionAware Proximity for Graph Mining
, 2007
"... In this paper we study asymmetric proximity measures on directed graphs, which quantify the relationships between two nodes or two groups of nodes. The measures are useful in several graph mining tasks, including clustering, link prediction and connection subgraph discovery. Our proximity measure is ..."
Abstract

Cited by 48 (9 self)
 Add to MetaCart
In this paper we study asymmetric proximity measures on directed graphs, which quantify the relationships between two nodes or two groups of nodes. The measures are useful in several graph mining tasks, including clustering, link prediction and connection subgraph discovery. Our proximity measure is based on the concept of escape probability. This way, we strive to summarize the multiple facets of nodesproximity, while avoiding some of the pitfalls to which alternative proximity measures are susceptible. A unique feature of the measures is accounting for the underlying directional information. We put a special emphasis on computational efficiency, and develop fast solutions that are applicable in several settings. Our experimental study shows the usefulness of our proposed directionaware proximity method for several applications, and that our algorithms achieve a significant speedup (up to 50,000x) over straightforward implementations.
Proximity Tracking on TimeEvolving Bipartite Graphs
"... Given an authorconference network that evolves over time, which are the conferences that a given author is most closely related with, and how do they change over time? Large timeevolving bipartite graphs appear in many settings, such as social networks, cocitations, marketbasket analysis, and co ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
(Show Context)
Given an authorconference network that evolves over time, which are the conferences that a given author is most closely related with, and how do they change over time? Large timeevolving bipartite graphs appear in many settings, such as social networks, cocitations, marketbasket analysis, and collaborative filtering. Our goal is to monitor (i) the centrality of an individual node (e.g., who are the most important authors?); and (ii) the proximity of two nodes or sets of nodes (e.g., who are the most important authors with respect to a particular conference?) Moreover, we want to do this efficiently and incrementally, and to provide “anytime ” answers. We propose pTrack and cTrack, which are based on random walk with restart, and use powerful matrix tools. Experiments on real data show that our methods are effective and efficient: the mining results agree with intuition; and we achieve up to 15∼176 times speedup, without any quality loss. 1
Progress in linear programmingbased algorithms for integer programming: An exposition
 INFORMS JOURNAL ON COMPUTING
, 2000
"... This paper is about modeling and solving mixed integer programming (MIP) problems. In the last decade, the use of mixed integer programming models has increased dramatically. Fifteen years ago, mainframe computers were required to solve problems with a hundred integer variables. Now it is possible t ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
(Show Context)
This paper is about modeling and solving mixed integer programming (MIP) problems. In the last decade, the use of mixed integer programming models has increased dramatically. Fifteen years ago, mainframe computers were required to solve problems with a hundred integer variables. Now it is possible to solve problems with thousands of integer variables on a personal computer and obtain provably good approximate solutions to problems such as set partitioning with millions of binary variables. These advances have been made possible by developments in modeling, algorithms, software, and hardware. This paper focuses on effective modeling, preprocessing, and the methodologies of branchandcut and branchandprice, which are the techniques that make it possible to treat problems with either a very large number of constraints or a very large number of variables. We show how these techniques are useful
Exact solution of multicommodity network optimization problems with general step cost functions
, 1999
"... ..."
Swapping a failing edge of a single source shortest paths tree is good and fast
 Algorithmica
, 1999
"... Abstract. Let G = (V, E) be a 2edge connected, undirected and nonnegatively weighted graph, and let S(r) be a single source shortest paths tree (SPT) of G rooted at r ∈ V. Whenever an edge e in S(r) fails, we are interested in reconnecting the nodes now disconnected from the root by means of a sing ..."
Abstract

Cited by 25 (8 self)
 Add to MetaCart
(Show Context)
Abstract. Let G = (V, E) be a 2edge connected, undirected and nonnegatively weighted graph, and let S(r) be a single source shortest paths tree (SPT) of G rooted at r ∈ V. Whenever an edge e in S(r) fails, we are interested in reconnecting the nodes now disconnected from the root by means of a single edge e ′ crossing the cut created by the removal of e. Such an edge e ′ is named a swap edge for e. Let Se/e ′(r) be the swap tree (no longer an SPT, in general) obtained by swapping e with e ′ , and let Se be the set of all possible swap trees with respect to e. Let F be a function defined over Se that expresses some feature of a swap tree, such as the average length of a path from the root r to all the nodes below edge e, or the maximum length, or one of many others. A best swap edge for e with respect to F is a swap edge f such that F(Se/f (r)) is minimum. In this paper we present efficient algorithms for the problem of finding a best swap edge, for each edge e of S(r), with respect to several objectives. Our work is motivated by a scenario in which individual connections in a communication network suffer transient failures. As a consequence of an edge failure, the shortest paths to all the nodes below the failed edge might completely change, and it might be desirable to avoid an expensive switch to a new SPT, because the failure is only temporary. As an aside, what we get is not even far from a new SPT: our analysis shows that the trees obtained from the swapping have features very similar to those of the corresponding SPTs rebuilt from scratch. Key Words. Network survivability, Single source shortest paths tree, Swap algorithms. 1. Introduction. Survivability
Practical Problem Solving with Cutting Plane Algorithms in Combinatorial Optimization
, 1994
"... Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many p ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many purely combinatorial algorithms. The purpose of this article is to give an introduction to cutting plane algorithms from an implementor's point of view. Special emphasis is given to control and data structures used in practically successful implementations of branch and cut algorithms. We also address the issue of parallelization. Finally, we point out that in important applications branch and cut algorithms are not only able to produce optimal solutions but also approximations to the optimum with certified good quality in moderate computation times. We close with an overview of successful practical applications in the literature.