Results 1  10
of
119
Finite volume evolution galerkin methods for nonlinear hyperbolic systems
 J. Comput. Phys
"... Abstract. We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Lukáčová, Noelle and Kraft, J. Comp. Phys. 221, 2007), but adds ..."
Abstract

Cited by 37 (10 self)
 Add to MetaCart
(Show Context)
Abstract. We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Lukáčová, Noelle and Kraft, J. Comp. Phys. 221, 2007), but adds the possibility to handle dry boundaries. The most important aspect is to preserve the positivity of the water height. We present a general approach to ensure this for arbitrary finite volume schemes. The scheme is also wellbalanced and a new entropy fix improves the reproduction of sonic rarefaction waves.
Wellbalanced finite volume schemes of arbitrary order of accuracy for shallow water flows
, 2006
"... ..."
Handbook of Numerical Analysis
"... A consistent intermediate wave speed for a wellbalanced HLLC solver ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
(Show Context)
A consistent intermediate wave speed for a wellbalanced HLLC solver
A SecondOrder WellBalanced Positivity Preserving CentralUpwind Scheme for the SaintVenant System
 Communications in Mathematical Sciences
"... Abstract. A family of Godunovtype centralupwind schemes for the SaintVenant system of shallow water equations has been first introduced in [A. Kurganov and D. Levy, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 397–425]. Depending on the reconstruction step, the secondorder versions of the sche ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
Abstract. A family of Godunovtype centralupwind schemes for the SaintVenant system of shallow water equations has been first introduced in [A. Kurganov and D. Levy, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 397–425]. Depending on the reconstruction step, the secondorder versions of the schemes there could be made either wellbalanced or positivity preserving, but fail to satisfy both properties simultaneously. Here, we introduce an improved secondorder centralupwind scheme which, unlike its forerunners, is capable to both preserve stationary steady states (lake at rest) and to guarantee the positivity of the computed fluid depth. Another novel property of the proposed scheme is its applicability to models with discontinuous bottom topography. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of one and twodimensional examples. Key words. Hyperbolic systems of conservation and balance laws, semidiscrete centralupwind schemes, SaintVenant system of shallow water equations. AMS subject classifications. 65M99, 35L65 1.
High Order Wellbalanced Finite Volume WENO Schemes for Shallow Water Equation with Moving Water
, 2007
"... A characteristic feature of hyperbolic systems of balance laws is the existence of nontrivial equilibrium solutions, where the effects of convective fluxes and source terms cancel each other. Recently a number of socalled wellbalanced schemes were developed which satisfy a discrete analogue of th ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
A characteristic feature of hyperbolic systems of balance laws is the existence of nontrivial equilibrium solutions, where the effects of convective fluxes and source terms cancel each other. Recently a number of socalled wellbalanced schemes were developed which satisfy a discrete analogue of this balance and are therefore able to maintain an equilibrium state. In most cases, applications treated equilibria at rest, where the flow velocity vanishes. Here we present a new very high order accurate, exactly wellbalanced finite volume scheme for moving flow equilibria. Numerical experiments show excellent resolution of unperturbed as well as slightly perturbed equilibria.
Finite volume schemes for dispersive wave propagation and runup
 J. Comput. Phys
, 2011
"... ar ..."
Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation
 J. Comput. Phys
, 2008
"... We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Ty ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth, momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver is endowed with several desirable properties simultaneously. This solver is wellbalanced: it maintains a large class of steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth nonnegativity and extends naturally to Riemann problems with an initial dry state. These are important properties for applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVeque’s wave propagation algorithm [25] is also described. Several numerical simulations are shown, including a test problem for tsunami modeling. Key words: shallow water equations, hyperbolic conservation laws, finite volume methods, Godunov methods, Riemann solvers, wave propagation, shock capturing methods, tsunami modeling
The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation
 Eur. J. Mech. B/Fluids
"... To cite this version: ..."
A new approach of high order wellbalanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms
 Communications in Computational Physics
"... Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order wellbalanced schemes to a class of hyperbolic systems with separable source terms. In this paper, w ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order wellbalanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order wellbalanced finite volume weighted essentially nonoscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the nonoscillatory property for general solutions with discontinuities, and the genuine high
A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes
 SIAM J. Sci. Comput
"... Abstract. The VFRoe scheme has been recently introduced to approximate the solutions of the shallow water equations. One of the main interest of this method is to be easily implemented. As a consequence, such a scheme appears as an interesting alternative to other more sophisticated schemes. The VFR ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
(Show Context)
Abstract. The VFRoe scheme has been recently introduced to approximate the solutions of the shallow water equations. One of the main interest of this method is to be easily implemented. As a consequence, such a scheme appears as an interesting alternative to other more sophisticated schemes. The VFRoe methods perform approximate solutions in a good agreement with the expected ones. However, the robustness of this numerical procedure has not been proposed. Following the ideas introduced by JinXin [Comm. Pure Appl. Math., 45, 235–276 (1995)], a relevant relaxation method is derived. The interest of this relaxation scheme is twofold. In the first hand, the relaxation scheme is shown to coincide with the considered VFRoe scheme. In the second hand, the robustness of the relaxation scheme is established and thus the nonnegativity of the water height, obtained involving the VFRoe approach, is ensured. Following the same idea, a family of relaxation schemes is exhibited. Next, robust high order MUSCL extensions are proposed. The final scheme is obtained when considering the hydrostatic reconstruction to approximate the topography source terms. Numerical experiments are performed to attest the interest of the procedure.