Results 1  10
of
30
Formalized mathematics
 TURKU CENTRE FOR COMPUTER SCIENCE
, 1996
"... It is generally accepted that in principle it’s possible to formalize completely almost all of presentday mathematics. The practicability of actually doing so is widely doubted, as is the value of the result. But in the computer age we believe that such formalization is possible and desirable. In c ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
It is generally accepted that in principle it’s possible to formalize completely almost all of presentday mathematics. The practicability of actually doing so is widely doubted, as is the value of the result. But in the computer age we believe that such formalization is possible and desirable. In contrast to the QED Manifesto however, we do not offer polemics in support of such a project. We merely try to place the formalization of mathematics in its historical perspective, as well as looking at existing praxis and identifying what we regard as the most interesting issues, theoretical and practical.
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
Infinitary Normalization
 We Will Show Them: Essays in Honour of Dov Gabbay
, 2005
"... abstract. In infinitary orthogonal firstorder term rewriting the properties confluence (CR), Uniqueness of Normal forms (UN), Parallel Moves Lemma (PML) have been generalized to their infinitary versions CR ∞ , UN ∞ , PML ∞ , and so on. Several relations between these properties have been establish ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
abstract. In infinitary orthogonal firstorder term rewriting the properties confluence (CR), Uniqueness of Normal forms (UN), Parallel Moves Lemma (PML) have been generalized to their infinitary versions CR ∞ , UN ∞ , PML ∞ , and so on. Several relations between these properties have been established in the literature. Generalization of the termination properties, Strong Normalization (SN) and Weak Normalization (WN) to SN ∞ and WN ∞ is less straightforward. We present and explain the definitions of these infinitary normalization notions, and establish that as a global property of orthogonal TRSs they coincide, so at that level there is just one notion of infinitary normalization. Locally, at the level of individual terms, the notions are still different. In the setting of orthogonal term rewriting we also provide an elementary proof of UN ∞ , the infinitary Unique Normal form property. 12
The Mathematical Import Of Zermelo's WellOrdering Theorem
 Bull. Symbolic Logic
, 1997
"... this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership distinction, a distinction only clarified at the turn of this century, remarkable though this may seem. Russell runs with this distinction, but is quickly caught on the horns of his wellknown paradox, an early expression of our motif. The motif becomes fully manifest through the study of functions f :
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
The history and concept of computability
 in Handbook of Computability Theory
, 1999
"... We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in th ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in their present roles, and how
Challenges to Predicative Foundations of Arithmetic
 in Between Logic and Intuition Essays in Honor of Charles Parsons
, 1996
"... This paper was written while the first author was a Fellow at the Center for Advanced Study in the Behavioral Sciences (Stanford, CA) whose facilities and support, under grants from the Andrew W. Mellon Foundation and the National Science Foundation, have been greatly appreciated. ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
This paper was written while the first author was a Fellow at the Center for Advanced Study in the Behavioral Sciences (Stanford, CA) whose facilities and support, under grants from the Andrew W. Mellon Foundation and the National Science Foundation, have been greatly appreciated.
MATHEMATICAL IDEA ANALYSIS: WHAT EMBODIED COGNITIVE SCIENCE CAN SAY ABOUT THE HUMAN NATURE OF MATHEMATICS
"... This article gives a brief introduction to a new discipline called the cognitive science of mathematics (Lakoff & Núñez, 2000), that is, the empirical and multidisciplinary study of mathematics (itself) as a scientific subject matter. The theoretical background of the arguments is based on embodied ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
This article gives a brief introduction to a new discipline called the cognitive science of mathematics (Lakoff & Núñez, 2000), that is, the empirical and multidisciplinary study of mathematics (itself) as a scientific subject matter. The theoretical background of the arguments is based on embodied cognition, and on relatively recent findings in cognitive linguistics. The article discusses Mathematical Idea Analysis—the set of techniques for studying implicit (largely unconscious) conceptual structures in mathematics. Particular attention is paid to everyday cognitive mechanisms such as image schemas and conceptual metaphors, showing how they play a fundamental role in constituting the very fabric of mathematics. The analyses, illustrated with a discussion of some issues of set and hyperset theory, show that it is (human) meaning what makes mathematics what it is: Mathematics is not transcendentally objective, but it is not arbitrary either (not the result of pure social conventions). Some implications for mathematics education are suggested. Have you ever thought why (I mean, really why) the multiplication of two negative numbers yields a positive one? Or why the empty class is a subclass of all
Loss of vision: How mathematics turned blind while it learned to see more clearly
 In B. Löwe and T. Müller (Eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice
, 2010
"... The aim of this paper is to provide a framework for the discussion of mathematical ontology that is rooted in actual mathematical practice, i.e., the way in which mathematicians have introduced and dealt with mathematical ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The aim of this paper is to provide a framework for the discussion of mathematical ontology that is rooted in actual mathematical practice, i.e., the way in which mathematicians have introduced and dealt with mathematical