Results 1  10
of
153
NanoFabrics: Spatial Computing Using Molecular Electronics
"... The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deepsubmicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by a ..."
Abstract

Cited by 162 (12 self)
 Add to MetaCart
(Show Context)
The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deepsubmicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOSbased computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAENbased computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide highdensity chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAENbased computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.
An Introduction to Quantum Computing for NonPhysicists
 Los Alamos Physics Preprint Archive http://xxx.lanl.gov/abs/quantph/9809016
, 2000
"... ..."
(Show Context)
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental
Energy Aware Computing Through Probabilistic Switching: A Study of Limits
 IEEE Transactions on Computers
, 2005
"... ..."
(Show Context)
Quantum walks: a comprehensive review
, 2012
"... Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists and engineers. In this paper we review theoretical advances on the foundations of both discrete and continuoustime quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discretetime quantum walks. Furthermore, we have reviewed several algorithms based on both discrete and continuoustime quantum walks as well as a most important result: the computational universality of both continuous and discretetime quantum walks.
Transcending the Limits of Turing Computability
, 1998
"... Hypercomputation or superTuring computation is a “computation ” that transcends the limit imposed by Turing’s model of computability. The field still faces some basic questions, technical (can we mathematically and/or physically build a hypercomputer?), cognitive (can hypercomputers realize the AI ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
(Show Context)
Hypercomputation or superTuring computation is a “computation ” that transcends the limit imposed by Turing’s model of computability. The field still faces some basic questions, technical (can we mathematically and/or physically build a hypercomputer?), cognitive (can hypercomputers realize the AI dream?), philosophical (is thinking more than computing?). The aim of this paper is to address the question: can we mathematically build a hypercomputer? We will discuss the solutions of the Infinite Merchant Problem, a decision problem equivalent to the Halting Problem, based on results obtained in [9, 2]. The accent will be on the new computational technique and results rather than formal proofs. 1
Rate distortion manifolds as model spaces for cognitive information
 In preparation
, 2007
"... The rate distortion manifold is considered as a carrier for elements of the theory of information proposed by C. E. Shannon combined with the semantic precepts of F. Dretske’s theory of communication. This type of information space was suggested by R. Wallace as a possible geometric–topological desc ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
(Show Context)
The rate distortion manifold is considered as a carrier for elements of the theory of information proposed by C. E. Shannon combined with the semantic precepts of F. Dretske’s theory of communication. This type of information space was suggested by R. Wallace as a possible geometric–topological descriptive model for incorporating a dynamic information based treatment of the Global Workspace theory of B. Baars. We outline a more formal mathematical description for this class of information space and further clarify its structural content and overall interpretation within prospectively a broad range of cognitive situations that apply to individuals, human institutions, distributed cognition and massively parallel intelligent machine design. Povzetek: Predstavljena je formalna definicija prostora za opisovanje kognitivnih procesov. 1