Results 1  10
of
15
The Impact of the Lambda Calculus in Logic and Computer Science
 Bulletin of Symbolic Logic
, 1997
"... One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the represent ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand. Acknowledgement. The following persons provided help in various ways. Erik Barendsen, Jon Barwise, Johan van Benthem, Andreas Blass, Olivier Danvy, Wil Dekkers, Marko van Eekelen, Sol Feferman, Andrzej Filinski, Twan Laan, Jan Kuper, Pierre Lescanne, Hans Mooij, Robert Maron, Rinus Plasmeijer, Randy Pollack, Kristoffer Rose, Richard Shore, Rick Statman and Simon Thompson. Partial support came from the European HCM project Typed lambda calculus (CHRXCT920046), the Esprit Working Group Types (21900) and the Dutch NWO project WINST (612316607). 1. Introduction This paper is written to honor Church's gr...
Step By Recursive Step: Church's Analysis Of Effective Calculability
 BULLETIN OF SYMBOLIC LOGIC
, 1997
"... Alonzo Church's mathematical work on computability and undecidability is wellknown indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, was "Ch ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Alonzo Church's mathematical work on computability and undecidability is wellknown indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, was "Church's Thesis" put forward publicly only in April 1935, when it had been formulated already in February/March 1934? Why did Church choose to formulate it then in terms of G odel's general recursiveness, not his own #definability as he had done in 1934? A number of letters were exchanged between Church and Paul Bernays during the period from December 1934 to August 1937; they throw light on critical developments in Princeton during that period and reveal novel aspects of Church's distinctive contribution to the analysis of the informal notion of e#ective calculability. In particular, they allow me to give informed, though still tentative answers to the questions I raised; the char...
An Interactive Proof System for Map Theory
, 2002
"... This dissertation is submitted in partial ful llment of the requirements for the Danish Ph.D. degree. It documents work done between August 1999 and September 2002 at the Department of Computer Science at the University of Copenhagen (DIKU) ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This dissertation is submitted in partial ful llment of the requirements for the Danish Ph.D. degree. It documents work done between August 1999 and September 2002 at the Department of Computer Science at the University of Copenhagen (DIKU)
Course Notes in Typed Lambda Calculus
, 1998
"... this paper is clearly stated, after recalling how the logical connectives can be explained in term of the Sheffer connective: "We are led to the idea, which at first glance certainly appears extremely bold of attempting to eliminate by suitable reduction the remaining fundamental notions, those of p ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
this paper is clearly stated, after recalling how the logical connectives can be explained in term of the Sheffer connective: "We are led to the idea, which at first glance certainly appears extremely bold of attempting to eliminate by suitable reduction the remaining fundamental notions, those of proposition, propositional function, and variable, from those contexts in which we are dealing with completely arbitrary, logical general propositions . . . To examine this possibility more closely and to pursue it would be valuable not only from the methodological point of view that enjoins us to strive for the greatest possible conceptual uniformity but also from a certain philosophic, or if you wish, aesthetic point of view."
Why sets?
 PILLARS OF COMPUTER SCIENCE: ESSAYS DEDICATED TO BORIS (BOAZ) TRAKHTENBROT ON THE OCCASION OF HIS 85TH BIRTHDAY, VOLUME 4800 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2008
"... Sets play a key role in foundations of mathematics. Why? To what extent is it an accident of history? Imagine that you have a chance to talk to mathematicians from a faraway planet. Would their mathematics be setbased? What are the alternatives to the settheoretic foundation of mathematics? Besi ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Sets play a key role in foundations of mathematics. Why? To what extent is it an accident of history? Imagine that you have a chance to talk to mathematicians from a faraway planet. Would their mathematics be setbased? What are the alternatives to the settheoretic foundation of mathematics? Besides, set theory seems to play a significant role in computer science; is there a good justification for that? We discuss these and some related issues.
Curry's Anticipation of the Types Used in Programming Languages
, 2003
"... This paper shows that H. B. Curry anticipated both the kind of data types used in computer programming languages and also the dependent function type. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper shows that H. B. Curry anticipated both the kind of data types used in computer programming languages and also the dependent function type.
On the Role of Implication in Formal Logic
, 1998
"... Evidence is given that implication (and its special case, negation) carry the logical strength of a system of formal logic. This is done by proving normalization and cut elimination for a system based on combinatory logic or #calculus with logical constants for and, or, all, and exists, but with no ..."
Abstract
 Add to MetaCart
Evidence is given that implication (and its special case, negation) carry the logical strength of a system of formal logic. This is done by proving normalization and cut elimination for a system based on combinatory logic or #calculus with logical constants for and, or, all, and exists, but with none for either implication or negation. The proof is strictly finitary, showing that this system is very weak. The results can be extended to a "classical" version of the system. They can also be extended to a system with a restricted set of rules for implication: the result is a system of intuitionistic higherorder BCK logic with unrestricted comprehension and without restriction on the rules for disjunction elimination and existential elimination. The result does not extend to the classical version of the BCK logic. 1991 AMS (MOS) Classification: 03B40, 03F05, 03B20 Key words: Implication, negation, combinatory logic, lambda calculus, comprehension principle, normalization, cutelimination...
LambdaCalculus and Functional Programming
"... This paper deals with the problem of a program that is essentially the same over any of several types but which, in the older imperative languages must be rewritten for each separate type. For example, a sort routine may be written with essentially the same code except for the types for integers, bo ..."
Abstract
 Add to MetaCart
This paper deals with the problem of a program that is essentially the same over any of several types but which, in the older imperative languages must be rewritten for each separate type. For example, a sort routine may be written with essentially the same code except for the types for integers, booleans, and strings. It is clearly desirable to have a method of writing a piece of code that can accept the specific type as an argument. Milner developed his ideas in terms of type assignment to lambdaterms. It is based on a result due originally to Curry (Curry 1969) and Hindley (Hindley 1969) known as the principal typescheme theorem, which says that (assuming that the typing assumptions are sufficiently wellbehaved) every term has a principal typescheme, which is a typescheme such that every other typescheme which can be proved for the given term is obtained by a substitution of types for type variables. This use of type schemes allows a kind of generality over all types, which is known as polymorphism.
On the Role of Implication in Formal Logic
"... Evidence is given that implication (and its special case, negation) carry the logical strength of a system of formal logic. This is done by proving normalization and cut elimination for a system based on combinatory logic or #calculus with logical constants for and, or, all, and exists, but with no ..."
Abstract
 Add to MetaCart
Evidence is given that implication (and its special case, negation) carry the logical strength of a system of formal logic. This is done by proving normalization and cut elimination for a system based on combinatory logic or #calculus with logical constants for and, or, all, and exists, but with none for either implication or negation. The proof is strictly finitary, showing that this system is very weak. The results can be extended to a "classical" version of the system. They can also be extended to a system with a restricted set of rules for implication: the result is a system of intuitionistic higherorder BCK logic with unrestricted comprehension and without restriction on the rules for disjunction elimination and existential elimination. The result does not extend to the classical version of the BCK logic. 1991 AMS (MOS) Classification: 03B40, 03F05, 03B20 Key words: Implication, negation, combinatory logic, lambda calculus, comprehension principle, normalization, cutelimination...