Results 1  10
of
119
Bayesian measures of model complexity and fit
 Journal of the Royal Statistical Society, Series B
, 2002
"... [Read before The Royal Statistical Society at a meeting organized by the Research ..."
Abstract

Cited by 435 (4 self)
 Add to MetaCart
[Read before The Royal Statistical Society at a meeting organized by the Research
Assessment and Propagation of Model Uncertainty
, 1995
"... this paper I discuss a Bayesian approach to solving this problem that has long been available in principle but is only now becoming routinely feasible, by virtue of recent computational advances, and examine its implementation in examples that involve forecasting the price of oil and estimating the ..."
Abstract

Cited by 221 (0 self)
 Add to MetaCart
this paper I discuss a Bayesian approach to solving this problem that has long been available in principle but is only now becoming routinely feasible, by virtue of recent computational advances, and examine its implementation in examples that involve forecasting the price of oil and estimating the chance of catastrophic failure of the U.S. Space Shuttle.
Sampling and Bayes inference in scientific modeling and robustness. (with discussion
 Journal of the Royal Statistical Society, Series A
, 1980
"... t ..."
Hierarchical Priors and Mixture Models, With Application in Regression and Density Estimation
, 1993
"... ..."
Smoothing Spline Models for the Analysis of Nested and Crossed Samples of Curves
 Journal of the American Statistical Association
, 1998
"... We introduce a class of models for an additive decomposition of groups of curves strati ed by crossed and nested factors, generalizing smoothing splines to such samples by associating them with a corresponding mixed e ects model. The models are also useful for imputation of missing data and explorat ..."
Abstract

Cited by 126 (1 self)
 Add to MetaCart
(Show Context)
We introduce a class of models for an additive decomposition of groups of curves strati ed by crossed and nested factors, generalizing smoothing splines to such samples by associating them with a corresponding mixed e ects model. The models are also useful for imputation of missing data and exploratory analysis of variance. We prove that the best linear unbiased predictors (BLUP) from the extended mixed e ects model correspond to solutions of a generalized penalized regression where smoothing parameters are directly related to variance components, and we show that these solutions are natural cubic splines. The model parameters are estimated using a highly e cient implementation of the EM algorithm for restricted maximum likelihood (REML) estimation based on a preliminary eigenvector decomposition. Variability of computed estimates can be assessed with asymptotic techniques or with a novel hierarchical bootstrap resampling scheme for nested mixed e ects models. Our methods are applied to menstrual cycle data from studies of reproductive function that measure daily urinary progesterone; the sample of progesterone curves is strati ed by cycles nested within subjects nested within conceptive and nonconceptive groups.
Sequential Importance Sampling for Nonparametric Bayes Models: The Next Generation
 Journal of Statistics
, 1998
"... this paper, we exploit the similarities between the Gibbs sampler and the SIS, bringing over the improvements for Gibbs sampling algorithms to the SIS setting for nonparametric Bayes problems. These improvements result in an improved sampler and help satisfy questions of Diaconis (1995) pertaining t ..."
Abstract

Cited by 93 (6 self)
 Add to MetaCart
this paper, we exploit the similarities between the Gibbs sampler and the SIS, bringing over the improvements for Gibbs sampling algorithms to the SIS setting for nonparametric Bayes problems. These improvements result in an improved sampler and help satisfy questions of Diaconis (1995) pertaining to convergence. Such an effort can see wide applications in many other problems related to dynamic systems where the SIS is useful (Berzuini et al. 1996; Liu and Chen 1996). Section 2 describes the specific model that we consider. For illustration we focus discussion on the betabinomial model, although the methods are applicable to other conjugate families. In Section 3, we describe the first generation of the SIS and Gibbs sampler in this context, and present the necessary conditional distributions upon which the techniques rely. Section 4 describes the alterations that create the second generation techniques, and provides specific algorithms for the model we consider. Section 5 presents a comparison of the techniques on a large set of data. Section 6 provides theory that ensures the proposed methods work and that is generally applicable to many other problems using importance sampling approaches. The final section presents discussion. 2 The Model
Gene selection: a Bayesian variable selection approach
 BIOINFORMATICS
, 2003
"... Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We e ..."
Abstract

Cited by 84 (10 self)
 Add to MetaCart
(Show Context)
Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We employ latent variables to specialize the model to a regression setting and uses a Bayesian mixture prior to perform the variable selection. We control the size of the model by assigning a prior distribution over the dimension (number of significant genes) of the model. The posterior distributions of the parameters are not in explicit form and we need to use a combination of truncated sampling and Markov Chain Monte Carlo (MCMC) based computation techniques to simulate the parameters from the posteriors. The Bayesian model is flexible enough to identify significant genes as well as to perform future predictions. The method is applied to cancer classification via cDNA microarrays where the genes BRCA1 and BRCA2 are associated with a hereditary disposition to breast cancer, and the method is used to identify a set of significant genes. The method is also applied successfully to the leukemia data.
Spatiallyadaptive penalties for spline fitting
 Australian and New Zealand Journal of Statistics
, 2000
"... We study spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. Our estimates are pth degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
We study spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. Our estimates are pth degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty on the jumps of the pth derivative at the knots. To be spatially adaptive, the logarithm of the penalty is itself a linear spline but with relatively few knots and with values at the knots chosen to minimize GCV. This locallyadaptive spline estimator is compared with other spline estimators in the literature such as cubic smoothing splines and knotselection techniques for leastsquares regression. Our estimator can be interpreted as an empirical Bayes estimate for a prior allowing spatial heterogeneity. In cases of spatially heterogeneous regression functions,
Inference for nonconjugate bayesian models using the gibbs sampler. Canadian Journal of statistics
, 1991
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 52 (13 self)
 Add to MetaCart
(Show Context)
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Statistical Society of Canada is collaborating with JSTOR to digitize, preserve and extend access to The