Results 1  10
of
409
Bundle adjustment – a modern synthesis
 Vision Algorithms: Theory and Practice, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 386 (12 self)
 Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, an ..."
Abstract

Cited by 320 (7 self)
 Add to MetaCart
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 303 (11 self)
 Add to MetaCart
An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degree polynomial in closed form and subsequently finding its roots. It is the first algorithm well suited for numerical implementation that also corresponds to the inherent complexity of the problem. We investigate the numerical precision of the algorithm. We also study its performance under noise in minimal as well as overdetermined cases. The performance is compared to that of the well known 8 and 7point methods and a 6point scheme. The algorithm is used in a robust hypothesizeandtest framework to estimate structure and motion in realtime with low delay. The realtime system uses solely visual input and has been demonstrated at major conferences.
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 241 (8 self)
 Add to MetaCart
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.
The Fundamental matrix: theory, algorithms, and stability analysis
 International Journal of Computer Vision
, 1995
"... In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of th ..."
Abstract

Cited by 233 (14 self)
 Add to MetaCart
In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of the principal points, pixels aspect ratio and focal lengths). This is important for two reasons. First, it is more realistic in applications where these parameters may vary according to the task (active vision). Second, the general case considered here, captures all the relevant information that is necessary for establishing correspondences between two pairs of images. This information is fundamentally projective and is hidden in a confusing manner in the commonly used formalism of the Essential matrix introduced by LonguetHiggins [40]. This paper clarifies the projective nature of the correspondence problem in stereo and shows that the epipolar geometry can be summarized in one 3 \Theta 3 ma...
Euclidean reconstruction from uncalibrated views
 Applications of Invariance in Computer Vision
, 1993
"... The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalen ..."
Abstract

Cited by 233 (14 self)
 Add to MetaCart
The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalently, Euclidean structurefrommotion from an uncalibrated camera. No tractable algorithm for implementing their methods for more than three images have been previously reported. This paper gives a practical algorithm for Euclidean reconstruction from several views with the same camera. The algorithm is demonstrated on synthetic and real data and is shown to behave very robustly in the presence of noise giving excellent calibration and reconstruction results. 1
The development and comparison of robust methods for estimating the fundamental matrix
 International Journal of Computer Vision
, 1997
"... Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mest ..."
Abstract

Cited by 220 (9 self)
 Add to MetaCart
Abstract. This paper has two goals. The first is to develop a variety of robust methods for the computation of the Fundamental Matrix, the calibrationfree representation of camera motion. The methods are drawn from the principal categories of robust estimators, viz. case deletion diagnostics, Mestimators and random sampling, and the paper develops the theory required to apply them to nonlinear orthogonal regression problems. Although a considerable amount of interest has focussed on the application of robust estimation in computer vision, the relative merits of the many individual methods are unknown, leaving the potential practitioner to guess at their value. The second goal is therefore to compare and judge the methods. Comparative tests are carried out using correspondences generated both synthetically in a statistically controlled fashion and from feature matching in real imagery. In contrast with previously reported methods the goodness of fit to the synthetic observations is judged not in terms of the fit to the observations per se but in terms of fit to the ground truth. A variety of error measures are examined. The experiments allow a statistically satisfying and quasioptimal method to be synthesized, which is shown to be stable with up to 50 percent outlier contamination, and may still be used if there are more than 50 percent outliers. Performance bounds are established for the method, and a variety of robust methods to estimate the standard deviation of the error and covariance matrix of the parameters are examined. The results of the comparison have broad applicability to vision algorithms where the input data are corrupted not only by noise but also by gross outliers.
A Factorization Based Algorithm for MultiImage Projective Structure and Motion
, 1996
"... . We propose a method for the recovery of projective shape and motion from multiple images of a scene by the factorization of a matrix containing the images of all points in all views. This factorization is only possible when the image points are correctly scaled. The major technical contribution of ..."
Abstract

Cited by 212 (15 self)
 Add to MetaCart
. We propose a method for the recovery of projective shape and motion from multiple images of a scene by the factorization of a matrix containing the images of all points in all views. This factorization is only possible when the image points are correctly scaled. The major technical contribution of this paper is a practical method for the recovery of these scalings, using only fundamental matrices and epipoles estimated from the image data. The resulting projective reconstruction algorithm runs quickly and provides accurate reconstructions. Results are presented for simulated and real images. 1 Introduction In the last few years, the geometric and algebraic relations between uncalibrated views have found lively interest in the computer vision community. A first key result states that, from two uncalibrated views, one can recover the 3D structure of a scene up to an unknown projective transformation [Fau92, HGC92]. The information one needs to do so is entirely contained in the fundam...
3D Model Acquisition from Extended Image Sequences
, 1995
"... This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token ..."
Abstract

Cited by 203 (25 self)
 Add to MetaCart
This paper describes the extraction of 3D geometrical data from image sequences, for the purpose of creating 3D models of objects in the world. The approach is uncalibrated  camera internal parameters and camera motion are not known or required. Processing an image sequence is underpinned by token correspondences between images. We utilise matching techniques which are both robust (detecting and discarding mismatches) and fully automatic. The matched tokens are used to compute 3D structure, which is initialised as it appears and then recursively updated over time. We describe a novel robust estimator of the trifocal tensor, based on a minimum number of token correspondences across an image triplet; and a novel tracking algorithm in which corners and line segments are matched over image triplets in an integrated framework. Experimental results are provided for a variety of scenes, including outdoor scenes taken with a handheld camcorder. Quantitative statistics are included to asses...
Canonic Representations for the Geometries of Multiple Projective Views
 Computer Vision and Image Understanding
, 1994
"... This work is in the context of motion and stereo analysis. It presents a new uni ed representation which will be useful when dealing with multiple views in the case of uncalibrated cameras. Several levels of information might be considered, depending on the availability of information. Among other t ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
This work is in the context of motion and stereo analysis. It presents a new uni ed representation which will be useful when dealing with multiple views in the case of uncalibrated cameras. Several levels of information might be considered, depending on the availability of information. Among other things, an algebraic description of the epipolar geometry of N views is introduced, as well as a framework for camera selfcalibration, calibration updating, and structure from motion in an image sequence taken by a camera which is zooming and moving at the same time. We show how a special decomposition of a set of two or three general projection matrices, called canonical enables us to build geometric descriptions for a system of cameras which are invariant with respect to a given group of transformations. These representations are minimal and capture completely the properties of each level of description considered: Euclidean (in the context of calibration, and in the context of structure from motion, which we distinguish clearly), a ne, and projective, that we also relate to each other. In the last case, a new decomposition of the wellknown fundamental matrix is obtained. Dependencies, which appear when three or more views are available, are studied in the context of the canonic decomposition, and new composition formulas are established. The theory is illustrated by tutorial examples with real images.