Results 1  10
of
196
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 447 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Locality Preserving Projections
, 2002
"... Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data s ..."
Abstract

Cited by 209 (15 self)
 Add to MetaCart
Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA)  a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
Face recognition using laplacianfaces
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Abstract—We propose an appearancebased face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) wh ..."
Abstract

Cited by 188 (21 self)
 Add to MetaCart
Abstract—We propose an appearancebased face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition. Index Terms—Face recognition, principal component analysis, linear discriminant analysis, locality preserving projections, face manifold, subspace learning. 1
Integrating Constraints and Metric Learning in SemiSupervised Clustering
 In ICML
, 2004
"... Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distanc ..."
Abstract

Cited by 180 (6 self)
 Add to MetaCart
Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distancefunction learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semisupervised clustering algorithm that integrates both of these techniques in a uniform, principled framework. Experimental results demonstrate that the unified approach produces better clusters than both individual approaches as well as previously proposed semisupervised clustering algorithms.
Unsupervised Learning of Image Manifolds by Semidefinite Programming
, 2004
"... Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be ..."
Abstract

Cited by 162 (9 self)
 Add to MetaCart
Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.
Principal manifolds and nonlinear dimensionality reduction via tangent space alignment zhenyue zhang, hongyuan zha
 SIAM Journal on Scientific Computing
, 2004
"... Abstract. Nonlinear manifold learning from unorganized data points is a very challenging unsupervised learning and data visualization problem with a great variety of applications. In this paper we present a new algorithm for manifold learning and nonlinear dimension reduction. Based on a set of unor ..."
Abstract

Cited by 133 (8 self)
 Add to MetaCart
Abstract. Nonlinear manifold learning from unorganized data points is a very challenging unsupervised learning and data visualization problem with a great variety of applications. In this paper we present a new algorithm for manifold learning and nonlinear dimension reduction. Based on a set of unorganized data points sampled with noise from the manifold, we represent the local geometry of the manifold using tangent spaces learned by fitting an affine subspace in a neighborhood of each data point. Those tangent spaces are aligned to give the internal global coordinates of the data points with respect to the underlying manifold by way of a partial eigendecomposition of the neighborhood connection matrix. We present a careful error analysis of our algorithm and show that the reconstruction errors are of secondorder accuracy. We illustrate our algorithm using curves and surfaces both in 2D/3D and higher dimensional Euclidean spaces, and 64by64 pixel face images with various pose and lighting conditions. We also address several theoretical and algorithmic issues for further research and improvements.
Learning a kernel matrix for nonlinear dimensionality reduction
 In Proceedings of the Twenty First International Conference on Machine Learning (ICML04
, 2004
"... We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into a nonlinear feature space, we show how to discover a mapping that “unfolds ” the underlying manifold from which the data ..."
Abstract

Cited by 112 (7 self)
 Add to MetaCart
We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into a nonlinear feature space, we show how to discover a mapping that “unfolds ” the underlying manifold from which the data was sampled. The kernel matrix is constructed by maximizing the variance in feature space subject to local constraints that preserve the angles and distances between nearest neighbors. The main optimization involves an instance of semidefinite programming—a fundamentally different computation than previous algorithms for manifold learning, such as Isomap and locally linear embedding. The optimized kernels perform better than polynomial and Gaussian kernels for problems in manifold learning, but worse for problems in large margin classification. We explain these results in terms of the geometric properties of different kernels and comment on various interpretations of other manifold learning algorithms as kernel methods.
OutofSample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering
 In Advances in Neural Information Processing Systems
, 2004
"... Several unsupervised learning algorithms based on an eigendecomposition provide either an embedding or a clustering only for given training points, with no straightforward extension for outofsample examples short of recomputing eigenvectors. This paper provides a unified framework for extending Lo ..."
Abstract

Cited by 94 (2 self)
 Add to MetaCart
Several unsupervised learning algorithms based on an eigendecomposition provide either an embedding or a clustering only for given training points, with no straightforward extension for outofsample examples short of recomputing eigenvectors. This paper provides a unified framework for extending Local Linear Embedding (LLE), Isomap, Laplacian Eigenmaps, MultiDimensional Scaling (for dimensionality reduction) as well as for Spectral Clustering. This framework is based on seeing these algorithms as learning eigenfunctions of a datadependent kernel.
Nearestneighbor searching and metric space dimensions
 In NearestNeighbor Methods for Learning and Vision: Theory and Practice
, 2006
"... Given a set S of n sites (points), and a distance measure d, the nearest neighbor searching problem is to build a data structure so that given a query point q, the site nearest to q can be found quickly. This paper gives a data structure for this problem; the data structure is built using the distan ..."
Abstract

Cited by 87 (0 self)
 Add to MetaCart
Given a set S of n sites (points), and a distance measure d, the nearest neighbor searching problem is to build a data structure so that given a query point q, the site nearest to q can be found quickly. This paper gives a data structure for this problem; the data structure is built using the distance function as a “black box”. The structure is able to speed up nearest neighbor searching in a variety of settings, for example: points in lowdimensional or structured Euclidean space, strings under Hamming and edit distance, and bit vector data from an OCR application. The data structures are observed to need linear space, with a modest constant factor. The preprocessing time needed per site is observed to match the query time. The data structure can be viewed as an application of a “kdtree ” approach in the metric space setting, using Voronoi regions of a subset in place of axisaligned boxes. 1
Learning Eigenfunctions Links Spectral Embedding And Kernel PCA
 NEURAL COMPUTATION
, 2004
"... In this paper, we show a direct relation between spectral embedding methods and kernel PCA, and how both are special cases of a more general learning problem, that of learning the principal eigenfunctions of an operator defined from a kernel and the unknown data generating density. Whereas ..."
Abstract

Cited by 66 (6 self)
 Add to MetaCart
In this paper, we show a direct relation between spectral embedding methods and kernel PCA, and how both are special cases of a more general learning problem, that of learning the principal eigenfunctions of an operator defined from a kernel and the unknown data generating density. Whereas