Results 1  10
of
164
A Probabilistic Framework for SemiSupervised Clustering
, 2004
"... Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supe ..."
Abstract

Cited by 208 (14 self)
 Add to MetaCart
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn the distance measure. We propose a probabilistic model for semisupervised clustering based on Hidden Markov Random Fields (HMRFs) that provides a principled framework for incorporating supervision into prototypebased clustering. The model generalizes a previous approach that combines constraints and Euclidean distance learning, and allows the use of a broad range of clustering distortion measures, including Bregman divergences (e.g., Euclidean distance and Idivergence) and directional similarity measures (e.g., cosine similarity). We present an algorithm that performs partitional semisupervised clustering of data by minimizing an objective function derived from the posterior energy of the HMRF model. Experimental results on several text data sets demonstrate the advantages of the proposed framework. 1.
Integrating Constraints and Metric Learning in SemiSupervised Clustering
 In ICML
, 2004
"... Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distanc ..."
Abstract

Cited by 197 (7 self)
 Add to MetaCart
Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distancefunction learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semisupervised clustering algorithm that integrates both of these techniques in a uniform, principled framework. Experimental results demonstrate that the unified approach produces better clusters than both individual approaches as well as previously proposed semisupervised clustering algorithms.
Clustering with instancelevel constraints
 In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract

Cited by 164 (6 self)
 Add to MetaCart
(Show Context)
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problemspecific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domainspecific information in the form of constraints on the output clusters. At the most general level, each constraint is an instancelevel statement
Active SemiSupervision for Pairwise Constrained Clustering
 Proc. 4th SIAM Intl. Conf. on Data Mining (SDM2004
"... Semisupervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of mustlink and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for acti ..."
Abstract

Cited by 100 (9 self)
 Add to MetaCart
(Show Context)
Semisupervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of mustlink and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for actively selecting informative pairwise constraints to get improved clustering performance. The clustering and active learning methods are both easily scalable to large datasets, and can handle very high dimensional data. Experimental and theoretical results confirm that this active querying of pairwise constraints significantly improves the accuracy of clustering when given a relatively small amount of supervision. 1
Data Clustering: 50 Years Beyond KMeans
, 2008
"... Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and m ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is exploratory in nature to find structure in data. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, Kmeans, was first published in 1955. In spite of the fact that Kmeans was proposed over 50 years ago and thousands of clustering algorithms have been published since then, Kmeans is still widely used. This speaks to the difficulty of designing a general purpose clustering algorithm and the illposed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semisupervised clustering, ensemble clustering, simultaneous feature selection, and data clustering and large scale data clustering.
Learning to classify text using positive and unlabeled data
 In: Proceedings of the 19th international joint conference on artificial intelligence
, 2003
"... In traditional text classification, a classifier is built using labeled training documents of every class. This paper studies a different problem. Given a set P of documents of a particular class (called positive class) and a set U of unlabeled documents that contains documents from class P and also ..."
Abstract

Cited by 62 (11 self)
 Add to MetaCart
In traditional text classification, a classifier is built using labeled training documents of every class. This paper studies a different problem. Given a set P of documents of a particular class (called positive class) and a set U of unlabeled documents that contains documents from class P and also other types of documents (called negative class documents), we want to build a classifier to classify the documents in U into documents from P and documents not from P. The key feature of this problem is that there is no labeled negative document, which makes traditional text classification techniques inapplicable. In this paper, we propose an effective technique to solve the problem. It combines the Rocchio method and the SVM technique for classifier building. Experimental results show that the new method outperforms existing methods significantly. 1
Semisupervised graph clustering: a kernel approach
, 2008
"... Semisupervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semisupervised clustering algorithms are designed for data represented as vectors. In this ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
Semisupervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semisupervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vectorbased and graphbased approaches. We first show that a recentlyproposed objective function for semisupervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel kmeans objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel kmeans and several graph clustering objectives enables us to perform semisupervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semisupervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with nonlinear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current stateoftheart semisupervised algorithms on both vectorbased and graphbased data sets.
Active Learning with Multiple Views
, 2002
"... Active learners alleviate the burden of labeling large amounts of data by detecting and asking the user to label only the most informative examples in the domain. We focus here on active learning for multiview domains, in which there are several disjoint subsets of features (views), each of which i ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
Active learners alleviate the burden of labeling large amounts of data by detecting and asking the user to label only the most informative examples in the domain. We focus here on active learning for multiview domains, in which there are several disjoint subsets of features (views), each of which is sufficient to learn the target concept. In this paper we make several contributions. First, we introduce CoTesting, which is the first approach to multiview active learning. Second, we extend the multiview learning framework by also exploiting weak views, which are adequate only for learning a concept that is more general/specific than the target concept. Finally, we empirically show that CoTesting outperforms existing active learners on a variety of real world domains such as wrapper induction, Web page classification, advertisement removal, and discourse tree parsing. 1.
Semisupervised learning with penalized probabilistic clustering
 In Advances in
, 2005
"... While clustering is usually an unsupervised operation, there are circumstances in which we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
(Show Context)
While clustering is usually an unsupervised operation, there are circumstances in which we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of outofsample data in a manner consistent with the prior knowledge expressed in the training set. Our starting point is probabilistic clustering based on Gaussian mixture models (GMM) of the data distribution. We express clustering preferences in the prior distribution over assignments of data points to clusters. This prior penalizes cluster assignments according to the degree with which they violate the preferences. We fit the model parameters with EM. Experiments on a variety of data sets show that PPC can consistently improve clustering results. 1
Generative modelbased document clustering: a comparative study
 Knowledge and Information Systems
, 2005
"... Semisupervised learning has become an attractive methodology for improving classification models and is often viewed as using unlabeled data to aid supervised learning. However, it can also be viewed as using labeled data to help clustering, namely, semisupervised clustering. Viewing semisupervis ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
(Show Context)
Semisupervised learning has become an attractive methodology for improving classification models and is often viewed as using unlabeled data to aid supervised learning. However, it can also be viewed as using labeled data to help clustering, namely, semisupervised clustering. Viewing semisupervised learning from a clustering angle is useful in practical situations when the set of labels available in labeled data are not complete, i.e., unlabeled data contain new classes that are not present in labeled data. This paper analyzes several multinomial modelbased semisupervised document clustering methods under a principled modelbased clustering framework. The framework naturally leads to a deterministic annealing extension of existing semisupervised clustering approaches. We compare three (slightly) different semisupervised approaches for clustering documents: Seeded damnl, Constrained damnl, and Feedbackbased damnl, where damnl stands for multinomial modelbased deterministic annealing algorithm. The first two are extensions of the seeded kmeans and constrained kmeans algorithms studied by Basu et al. (2002); the last one is motivated by Cohn et al. (2003). Through empirical experiments on text datasets, we show that: (a) deterministic annealing can often significantly improve the performance of semisupervised clustering; (b) the constrained approach is the best when available labels are complete whereas the feedbackbased approach excels when available labels are incomplete.