Results 1  10
of
39
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined wi ..."
Abstract

Cited by 408 (15 self)
 Add to MetaCart
(Show Context)
Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance. A. Background I.
Sparse Reconstruction by Separable Approximation
, 2008
"... Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing ( ..."
Abstract

Cited by 270 (28 self)
 Add to MetaCart
Finding sparse approximate solutions to large underdetermined linear systems of equations is a common problem in signal/image processing and statistics. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution and reconstruction, and compressed sensing (CS) are a few wellknown areas in which problems of this type appear. One standard approach is to minimize an objective function that includes a quadratic (ℓ2) error term added to a sparsityinducing (usually ℓ1) regularization term. We present an algorithmic framework for the more general problem of minimizing the sum of a smooth convex function and a nonsmooth, possibly nonconvex regularizer. We propose iterative methods in which each step is obtained by solving an optimization subproblem involving a quadratic term with diagonal Hessian (which is therefore separable in the unknowns) plus the original sparsityinducing regularizer. Our approach is suitable for cases in which this subproblem can be solved much more rapidly than the original problem. In addition to solving the standard ℓ2 − ℓ1 case, our framework yields an efficient solution technique for other regularizers, such as an ℓ∞norm regularizer and groupseparable (GS) regularizers. It also generalizes immediately to the case in which the data is complex rather than real. Experiments with CS problems show that our approach is competitive with the fastest known methods for the standard ℓ2 − ℓ1 problem, as well as being efficient on problems with other separable regularization terms.
Computational methods for sparse solution of linear inverse problems
, 2009
"... The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, ..."
Abstract

Cited by 107 (0 self)
 Add to MetaCart
The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a wealth of applications.
Efficient Online and Batch Learning using Forward Backward Splitting
"... We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem ..."
Abstract

Cited by 102 (1 self)
 Add to MetaCart
We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This view yields a simple yet effective algorithm that can be used for batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as ℓ1. We derive concrete and very simple algorithms for minimization of loss functions with ℓ1, ℓ2, ℓ 2 2, and ℓ ∞ regularization. We also show how to construct efficient algorithms for mixednorm ℓ1/ℓq regularization. We further extend the algorithms and give efficient implementations for very highdimensional data with sparsity. We demonstrate the potential of the proposed framework in a series of experiments with synthetic and natural datasets.
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 91 (13 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
 THE JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
, 2004
"... Regularization of illposed linear inverse problems via ℓ1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an ℓ1 penalized functional is via an iterative softthresholding algorithm. We propose an alternative implem ..."
Abstract

Cited by 72 (10 self)
 Add to MetaCart
(Show Context)
Regularization of illposed linear inverse problems via ℓ1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an ℓ1 penalized functional is via an iterative softthresholding algorithm. We propose an alternative implementation to ℓ1constraints, using a gradient method, with projection on ℓ1balls. The corresponding algorithm uses again iterative softthresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. Imaging Sci
, 2008
"... Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number o ..."
Abstract

Cited by 67 (14 self)
 Add to MetaCart
(Show Context)
Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
1Bit Compressive Sensing
"... Abstract—Compressive sensing is a new signal acquisition technology with the potential to reduce the number of measurements required to acquire signals that are sparse or compressible in some basis. Rather than uniformly sampling the signal, compressive sensing computes inner products with a randomi ..."
Abstract

Cited by 60 (11 self)
 Add to MetaCart
(Show Context)
Abstract—Compressive sensing is a new signal acquisition technology with the potential to reduce the number of measurements required to acquire signals that are sparse or compressible in some basis. Rather than uniformly sampling the signal, compressive sensing computes inner products with a randomized dictionary of test functions. The signal is then recovered by a convex optimization that ensures the recovered signal is both consistent with the measurements and sparse. Compressive sensing reconstruction has been shown to be robust to multilevel quantization of the measurements, in which the reconstruction algorithm is modified to recover a sparse signal consistent to the quantization measurements. In this paper we consider the limiting case of 1bit measurements, which preserve only the sign information of the random measurements. Although it is possible to reconstruct using the classical compressive sensing approach by treating the 1bit measurements as ±1 measurement values, in this paper we reformulate the problem by treating the 1bit measurements as sign constraints and further constraining the optimization to recover a signal on the unit sphere. Thus the sparse signal is recovered within a scaling factor. We demonstrate that this approach performs significantly better compared to the classical compressive sensing reconstruction methods, even as the signal becomes less sparse and as the number of measurements increases. I.
Sparse Signal Recovery Using Markov Random Fields
"... Compressive Sensing (CS) combines sampling and compression into a single subNyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a graphical model. In particular, we use Markov ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
(Show Context)
Compressive Sensing (CS) combines sampling and compression into a single subNyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a graphical model. In particular, we use Markov Random Fields (MRFs) to represent sparse signals whose nonzero coefficients are clustered. Our new modelbased recovery algorithm, dubbed Lattice Matching Pursuit (LaMP), stably recovers MRFmodeled signals using many fewer measurements and computations than the current stateoftheart algorithms. 1
Compressive sensing for background subtraction
 in European Conf. Comp. Vision (ECCV
, 2008
"... Abstract. Compressive sensing (CS) is an emerging field that provides a framework for image recovery using subNyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse in some basis, e.g., wavelets. In t ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Compressive sensing (CS) is an emerging field that provides a framework for image recovery using subNyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse in some basis, e.g., wavelets. In this paper, we describe a method to directly recover background subtracted images using CS and discuss its applications in some communication constrained multicamera computer vision problems. We show how to apply the CS theory to recover object silhouettes (binary background subtracted images) when the objects of interest occupy a small portion of the camera view, i.e., when they are sparse in the spatial domain. We cast the background subtraction as a sparse approximation problem and provide different solutions based on convex optimization and total variation. In our method, as opposed to learning the background, we learn and adapt a low dimensional compressed representation of it, which is sufficient to determine spatial innovations; object silhouettes are then estimated directly using the compressive samples without any auxiliary image reconstruction. We also discuss simultaneous appearance recovery of the objects using compressive measurements. In this case, we show that it may be necessary to reconstruct one auxiliary image. To demonstrate the performance of the proposed algorithm, we provide results on data captured using a compressive singlepixel camera. We also illustrate that our approach is suitable for image coding in communication constrained problems by using data captured by multiple conventional cameras to provide 2D tracking and 3D shape reconstruction results with compressive measurements. 1