Results 21  30
of
92
Mechanically Verifying the Correctness of an Offline Partial Evaluator
, 1995
"... We show that using deductive systems to specify an offline partial evaluator allows its correctness to be mechanically verified. For a mixstyle partial evaluator, we specify bindingtime constraints using a naturaldeduction logic, and the associated program specializer using natural (aka "deducti ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
We show that using deductive systems to specify an offline partial evaluator allows its correctness to be mechanically verified. For a mixstyle partial evaluator, we specify bindingtime constraints using a naturaldeduction logic, and the associated program specializer using natural (aka "deductive") semantics. These deductive systems can be directly encoded in the Elf programming language  a logic programming language based on the LF logical framework. The specifications are then executable as logic programs. This provides a prototype implementation of the partial evaluator. Moreover, since deductive system proofs are accessible as objects in Elf, many aspects of the partial evaluation correctness proofs (e.g., the correctness of bindingtime analysis) can be coded in Elf and mechanically verified. This work illustrates the utility of declarative programming and of using deductive systems for defining program specialization systems: by exploiting the logical character of definit...
Proof Methods for Structured Corecursive Programs
, 1999
"... Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. Ho ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. However, these methods are all rather lowlevel, in the sense that they do not exploit the common structure that is often present in corecursive definitions. We argue for a more structured approach to proving properties of corecursive programs. In particular, we show that by writing corecursive programs using an operator called unfold that encapsulates a common pattern of corecursive de nition, we can then use highlevel algebraic properties of this operator to conduct proofs in a purely calculational style that avoids the use of either induction or coinduction.
Operational domain theory and topology of a sequential language
 In Proceedings of the 20th Annual IEEE Symposium on Logic In Computer Science
, 2005
"... A number of authors have exported domaintheoretic techniques from denotational semantics to the operational study of contextual equivalence and order. We further develop this, and, moreover, we additionally export topological techniques. In particular, we work with an operational notion of compact ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
A number of authors have exported domaintheoretic techniques from denotational semantics to the operational study of contextual equivalence and order. We further develop this, and, moreover, we additionally export topological techniques. In particular, we work with an operational notion of compact set and show that total programs with values on certain types are uniformly continuous on compact sets of total elements. We apply this and other conclusions to prove the correctness of nontrivial programs that manipulate infinite data. What is interesting is that the development applies to sequential programming languages, in addition to languages with parallel features. 1
Using a Generalisation Critic to Find Bisimulations for Coinductive Proofs
 PROCEEDINGS OF THE 14TH CONFERENCE ON AUTOMATED DEDUCTION, VOLUME 1249 OF LECTURE NOTES IN ARTIFICIAL INTELIGENCE
, 1997
"... Coinduction is a method of growing importance in reasoning about functional languages, due to the increasing prominence of lazy data structures. Through the use of bisimulations and proofs that observational equivalence is a congruence in various domains it can be used to proof the congruence of ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
Coinduction is a method of growing importance in reasoning about functional languages, due to the increasing prominence of lazy data structures. Through the use of bisimulations and proofs that observational equivalence is a congruence in various domains it can be used to proof the congruence of two processes. Several proof tools have been developed to aid coinductive proofs but all require user interaction. Crucially they require the user to supply an appropriate relation which the system can then prove to be a bisimulation. A method is proposed which uses the idea of proof plans to make a heuristic guess at a suitable relation. If the proof fails for that relation the reasons for failure are analysed using a proof critic and a new relation is proposed to allow the proof to go through.
Improvement Theory and its Applications
 HIGHER ORDER OPERATIONAL TECHNIQUES IN SEMANTICS, PUBLICATIONS OF THE NEWTON INSTITUTE
, 1997
"... An improvement theory is a variant of the standard theories of observational approximation (or equivalence) in which the basic observations made of a functional program's execution include some intensionalinformation about, for example, the program's computational cost. One program is an improvement ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
An improvement theory is a variant of the standard theories of observational approximation (or equivalence) in which the basic observations made of a functional program's execution include some intensionalinformation about, for example, the program's computational cost. One program is an improvement of another if its execution is more efficient in any program context. In this article we give an overview of our work on the theory and applications of improvement. Applications include reasoning about time properties of functional programs, and proving the correctness of program transformation methods. We also introduce a new application, in the form of some bisimulationlike proof techniques for equivalence, with something of the flavour of Sangiorgi's "bisimulation upto expansion and context".
Adequacy of compositional translations for observational semantics
 INTERNATIONAL CONFERENCE ON THEORETICAL COMPUTER SCIENCE
, 2008
"... We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalenc ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.
A Fully Abstract Semantics for a HigherOrder Functional Language With Nondeterministic Computation
, 1994
"... . This paper is about the relationship between the theory of monadic types and the practice of concurrent functional programming. We present a typed functional programming language CMML, with a type system based on Moggi's monadic metalanguage, and concurrency based on Reppy's Concurrent ML. We pre ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
. This paper is about the relationship between the theory of monadic types and the practice of concurrent functional programming. We present a typed functional programming language CMML, with a type system based on Moggi's monadic metalanguage, and concurrency based on Reppy's Concurrent ML. We present an operational and denotational semantics for the language, and show that the denotational semantics is fully abstract for maytesting. We show that a fragment of CML can be translated into CMML, and that the translation is correct up to weak bisimulation. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Categories and monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
A Note on Logical Relations Between Semantics and Syntax
, 1997
"... This note gives a new proof of the `operational extensionality' property of Abramsky's lazy lambda calculusnamely the coincidence of contextual equivalence with a coinductively defined notion of `applicative bisimilarity'. This purely syntactic result is here proved using a logical relation (due ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
This note gives a new proof of the `operational extensionality' property of Abramsky's lazy lambda calculusnamely the coincidence of contextual equivalence with a coinductively defined notion of `applicative bisimilarity'. This purely syntactic result is here proved using a logical relation (due to Plotkin) between the syntax and its denotational semantics. The proof exploits a mixed inductive/coinductive characterisation of the logical relation recently discovered by the author.
A Computational Interpretation of the λμcalculus
, 1998
"... This paper proposes a simple computational interpretation of Parigot's calculus. The calculus is an extension of the typed calculus which corresponds via the CurryHoward correspondence to classical logic. Whereas other work has given computational interpretations by translating the calculus int ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
This paper proposes a simple computational interpretation of Parigot's calculus. The calculus is an extension of the typed calculus which corresponds via the CurryHoward correspondence to classical logic. Whereas other work has given computational interpretations by translating the calculus into other calculi, I wish to propose here that the calculus itself has a simple computational interpretation: it is a typed  calculus which is able to save and restore the runtime environment. This interpretation is best given as a singlestep semantics which, in particular, leads to a relatively simple, but powerful, operational theory.