Results 1  10
of
11
Free modal algebras: a coalgebraic perspective
"... Abstract. In this paper we discuss a uniform method for constructing free modal and distributive modal algebras. This method draws on works by (Abramsky 2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic and derive a normal form representation for positive modal logic. ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we discuss a uniform method for constructing free modal and distributive modal algebras. This method draws on works by (Abramsky 2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic and derive a normal form representation for positive modal logic. We also show that every finitely generated free modal and distributive modal algebra axiomatised by equations of rank 1 is a reduct of a temporal algebra. 1
Finitely generated free Heyting algebras via Birkhoff duality and coalgebra
 Logical Methods in Computer Science 7
, 2011
"... Vol. 7 (2:9) 2011, pp. 1–24 www.lmcsonline.org ..."
(Show Context)
SEMANTIC SPACES IN PRIESTLEY FORM
, 2006
"... To my family. ii Table of Contents Table of Contents iii Abstract vi ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
(Show Context)
To my family. ii Table of Contents Table of Contents iii Abstract vi
Finitary coalgebraic multisemilattices and multilatticesI,II
"... In this paper we continue the coalgebraization of the structure of multilattice. Specifically, we introduce a coalgebraic characterization of the notion of finitary multi(semi)lattice, a generalization of that of semilattice which arises naturally in several areas of computer science and provides t ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
In this paper we continue the coalgebraization of the structure of multilattice. Specifically, we introduce a coalgebraic characterization of the notion of finitary multi(semi)lattice, a generalization of that of semilattice which arises naturally in several areas of computer science and provides the possibility of handling nondeterminism.
Axiomatic Classes of Intuitionistic Models
"... A class of Kripke models for intuitionistic propositional logic is ‘axiomatic’ if it is the class of all models of some set of formulas (axioms). This paper discusses various structural characterisations of axiomatic classes in terms of closure under certain constructions, including images of bisim ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
A class of Kripke models for intuitionistic propositional logic is ‘axiomatic’ if it is the class of all models of some set of formulas (axioms). This paper discusses various structural characterisations of axiomatic classes in terms of closure under certain constructions, including images of bisimulations, disjoint unions, ultrapowers and ‘prime extensions’. The prime extension of a model is a new model whose points are the prime filters of the lattice of upwardlyclosed subsets of the original model. We also construct and analyse a ‘definable ’ extension whose points are prime filters of definable sets. A structural explanation is given of why a class that is closed under images of bisimulations and invariant under prime/definable extensions must be invariant under arbitrary ultrapowers. This uses iterated ultrapowers and saturation.
Positive Fragments of Coalgebraic Logics
"... Abstract. Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn’s result from Kripke frames to coalgebras of weakpullback preserving functors. For possible application to fixedpoint logics, it is noteworthy that the positive coalgebraic logic of a functor is given not by all predicateliftings but by all monotone predicate liftings.
Coalgebras, Stone Duality, Modal Logic
, 2006
"... A brief outline of the topics of the course could be as follows. Coalgebras generalise transition systems. Modal logics are the natural logics for coalgebras. Stone duality provides the relationship between coalgebras and modal logic. Furthermore, some basic category theory is needed to understand c ..."
Abstract
 Add to MetaCart
A brief outline of the topics of the course could be as follows. Coalgebras generalise transition systems. Modal logics are the natural logics for coalgebras. Stone duality provides the relationship between coalgebras and modal logic. Furthermore, some basic category theory is needed to understand coalgebras as well as Stone duality. So we
Analyzing completeness of axiomatic functional systems for temporal×modal
, 2009
"... logics ..."
(Show Context)
Axiomatic Classes of Intuitionistic Models 1
"... Abstract: A class of Kripke models for intuitionistic propositional logic is ‘axiomatic’ if it is the class of all models of some set of formulas (axioms). This paper discusses various structural characterisations of axiomatic classes in terms of closure under certain constructions, including images ..."
Abstract
 Add to MetaCart
Abstract: A class of Kripke models for intuitionistic propositional logic is ‘axiomatic’ if it is the class of all models of some set of formulas (axioms). This paper discusses various structural characterisations of axiomatic classes in terms of closure under certain constructions, including images of bisimulations, disjoint unions, ultrapowers and ‘prime extensions’. The prime extension of a model is a new model whose points are the prime filters of the lattice of upwardlyclosed subsets of the original model. We also construct and analyse a ‘definable ’ extension whose points are prime filters of definable sets. A structural explanation is given of why a class that is closed under images of bisimulations and invariant under prime/definable extensions must be invariant under arbitrary ultrapowers. This uses iterated ultrapowers and saturation.