Results 1  10
of
217
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 250 (18 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
A Really Temporal Logic
 Journal of the ACM
, 1989
"... . We introduce a temporal logic for the specification of realtime systems. Our logic, TPTL, employs a novel quantifier construct for referencing time: the freeze quantifier binds a variable to the time of the local temporal context. TPTL is both a natural language for specification and a suitable f ..."
Abstract

Cited by 238 (26 self)
 Add to MetaCart
. We introduce a temporal logic for the specification of realtime systems. Our logic, TPTL, employs a novel quantifier construct for referencing time: the freeze quantifier binds a variable to the time of the local temporal context. TPTL is both a natural language for specification and a suitable formalism for verification. We present a tableaubased decision procedure and a model checking algorithm for TPTL. Several generalizations of TPTL are shown to be highly undecidable. 1 Introduction Linear temporal logic is a widely accepted language for specifying properties of reactive systems and their behavior over time [Pnu77, OL82, MP92]. The tableaubased satisfiability algorithm for its propositional version, PTL, forms the basis for the automatic verification and synthesis of finitestate systems [LP84, MW84]. PTL is interpreted over models that abstract away from the actual times at which events occur, retaining only temporal ordering information about the states of a system. The a...
ManyValued Modal Logics
 Fundamenta Informaticae
, 1992
"... . Two families of manyvalued modal logics are investigated. Semantically, one family is characterized using Kripke models that allow formulas to take values in a finite manyvalued logic, at each possible world. The second family generalizes this to allow the accessibility relation between worlds a ..."
Abstract

Cited by 217 (16 self)
 Add to MetaCart
. Two families of manyvalued modal logics are investigated. Semantically, one family is characterized using Kripke models that allow formulas to take values in a finite manyvalued logic, at each possible world. The second family generalizes this to allow the accessibility relation between worlds also to be manyvalued. Gentzen sequent calculi are given for both versions, and soundness and completeness are established. 1 Introduction The logics that have appeared in artificial intelligence form a rich and varied collection. While classical (and maybe intuitionistic) logic su#ces for the formal development of mathematics, artificial intelligence has found uses for modal, temporal, relevant, and manyvalued logics, among others. Indeed, I take it as a basic principle that an application should find (or create) an appropriate logic, if it needs one, rather than reshape the application to fit some narrow class of `established' logics. In this paper I want to enlarge the variety of logics...
Automated Consistency Checking of Requirements Specifications
, 1996
"... This paper describes a formal analysis technique, called consistency checking, for automatic detection of errors, such as type errors, nondeterminism, missing cases, and circular definitions, in requirements specifications. The technique is designed to analyze requirements specifications expressed i ..."
Abstract

Cited by 210 (30 self)
 Add to MetaCart
This paper describes a formal analysis technique, called consistency checking, for automatic detection of errors, such as type errors, nondeterminism, missing cases, and circular definitions, in requirements specifications. The technique is designed to analyze requirements specifications expressed in the SCR (Software Cost Reduction) tabular notation. As background, the SCR approach to specifying requirements is reviewed. To provide a formal semantics for the SCR notation and a foundation for consistency checking, a formal requirements model is introduced; the model represents a software system as a finite state automaton, which produces externally visible outputs in response to changes in monitored environmental quantities. Results are presented of two experiments which evaluated the utility and sealability of our technique for consistency checking in a realworld avionics application. The role of consistency checking during the requirements phase of software development is discussed.
Decision Procedures and Expressiveness in the Temporal Logic of Branching Time
, 1985
"... We consider the computation tree logic (CTL) proposed in (Set. Comput. Programming 2 ..."
Abstract

Cited by 142 (4 self)
 Add to MetaCart
We consider the computation tree logic (CTL) proposed in (Set. Comput. Programming 2
P.: Agentoriented software engineering: The state of the art
 In: Proceedings of the First International Workshop on AgentOriented Software Engineering
, 2000
"... Abstract. Software engineers continually strive to develop tools and techniques to manage the complexity that is inherent in software systems. In this article, we argue that intelligent agents and multiagent systems are just such tools. We begin by reviewing what is meant by the term “agent”, and c ..."
Abstract

Cited by 106 (0 self)
 Add to MetaCart
Abstract. Software engineers continually strive to develop tools and techniques to manage the complexity that is inherent in software systems. In this article, we argue that intelligent agents and multiagent systems are just such tools. We begin by reviewing what is meant by the term “agent”, and contrast agents with objects. We then go on to examine a number of prototype techniques proposed for engineering agent systems, including methodologies for agentoriented analysis and design, formal specification and verification methods for agent systems, and techniques for implementing agent specifications. 1
The Complexity Of Propositional Proofs
 Bulletin of Symbolic Logic
, 1995
"... This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on ..."
Abstract

Cited by 105 (2 self)
 Add to MetaCart
This paper of Tseitin is a landmark as the first to give nontrivial lower bounds for propositional proofs; although it predates the first papers on
Representing Discourse in Context
, 1996
"... Contents 1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2. The Problem of Anaphoric Linking in Context : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 3. Basic Ideas of Discourse R ..."
Abstract

Cited by 80 (16 self)
 Add to MetaCart
Contents 1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2. The Problem of Anaphoric Linking in Context : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 3. Basic Ideas of Discourse Representation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 4. Discourse Representation Structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14 5. The Static and Dynamic Meaning of Representation Structures : : : : : : : : : : : : : : : : : : : : 17 6. Sequential Composition of Representation Structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21 7. Strategies for Merging Representation Structures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 8. Disjoint Mer
Internalizing Labelled Deduction
 Journal of Logic and Computation
, 2000
"... This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to ..."
Abstract

Cited by 74 (20 self)
 Add to MetaCart
This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to the object language, and to handle labelling discipline logically. This internalized approach to labelled deduction links neatly with the Gabbaystyle rules now widely used in modal Hilbertsystems, enables completeness results for a wide range of rstorder denable frame classes to be obtained automatically, and extends to many richer languages. The paper discusses related work by Jerry Seligman and Miroslava Tzakova and concludes with some reections on the status of labelling in modal logic. 1 Introduction Modern modal logic revolves around the Kripke satisfaction relation: M;w ': This says that the model M satises (or forces, or supports) the modal formula ' at the state w in M....
Lazy Satisfiability Modulo Theories
 Journal on Satisfiability, Boolean Modeling and Computation
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 74 (32 self)
 Add to MetaCart
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that of acquiring a comprehensive background knowledge in lazy SMT, is of simple solution. In this paper we present an extensive survey of SMT, with particular focus on the lazy approach. We survey, classify and analyze from a theoryindependent perspective the most effective techniques and optimizations which are of interest for lazy SMT and which have been proposed in various communities; we discuss their relative benefits and drawbacks; we provide some guidelines about their choice and usage; we also analyze the features for SAT solvers and Tsolvers which make them more suitable for an integration. The ultimate goals of this paper are to become a source of a common background knowledge and terminology for students and researchers in different areas, to provide a reference guide for developers of SMT tools, and to stimulate the crossfertilization of techniques and ideas among different communities.