Results 1  10
of
71
Text Classification from Labeled and Unlabeled Documents using EM
 Machine Learning
, 1999
"... . This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract

Cited by 803 (17 self)
 Add to MetaCart
. This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of ExpectationMaximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve ...
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 554 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the KullbackLeibler divergence between the model and the empirical distribution of the training data. A greedy algorithm determines how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. The random field models and techniques introduced in this paper differ from those common to much of the computer vision literature in that the underlying random fields are nonMarkovian and have a large number of parameters that must be estimated. Relations to other learning approaches, including decision trees, are given. As a demonstration of the method, we describe its application to the problem of automatic word classifica...
S.: Hidden Markov Model Induction by Bayesian Model Merging
 Advances in Neural Information Processing Systems 5
, 1993
"... This paper describes a technique for learning both the number of states and the topology of Hidden Markov Models from examples. The induction process starts with the most specific model consistent with the training data and generalizes by successively merging states. Both the choice of states to mer ..."
Abstract

Cited by 135 (2 self)
 Add to MetaCart
This paper describes a technique for learning both the number of states and the topology of Hidden Markov Models from examples. The induction process starts with the most specific model consistent with the training data and generalizes by successively merging states. Both the choice of states to merge and the stopping criterion are guided by the Bayesian posterior probability. We compare our algorithm with the BaumWelch method of estimating fixedsize models, and find that it can induce minimal HMMs from data in cases where fixed estimation does not converge or requires redundant parameters to converge. 1
Inducing probabilistic grammars by bayesian model merging
 In: Int. Conf. Grammatical Inference. URL: citeseer.nj.nec.com/stolcke94inducing.html
, 1994
"... We describe a framework for inducing probabilistic grammars from corpora of positive samples. First, samples are incorporated by adding adhoc rules to a working grammar; subsequently, elements of the model (such as states or nonterminals) are merged to achieve generalization and a more compact repr ..."
Abstract

Cited by 130 (0 self)
 Add to MetaCart
We describe a framework for inducing probabilistic grammars from corpora of positive samples. First, samples are incorporated by adding adhoc rules to a working grammar; subsequently, elements of the model (such as states or nonterminals) are merged to achieve generalization and a more compact representation. The choice of what to merge and when to stop is governed by the Bayesian posterior probability of the grammar given the data, which formalizes a tradeoff between a close fit to the data and a default preference for simpler models (‘Occam’s Razor’). The general scheme is illustrated using three types of probabilistic grammars: Hidden Markov models, classbasedgrams, and stochastic contextfree grammars. 1
MachineLearning Research  Four Current Directions
"... Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up super ..."
Abstract

Cited by 114 (1 self)
 Add to MetaCart
Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.
Information Extraction with HMM Structures Learned by Stochastic Optimization
, 2001
"... Recent research has demonstrated the strong performance of hidden Markov models applied to information extraction  the task of populating database slots with corresponding phrases from text documents. A remaining problem, however, is the selection of statetransition structure for the model. This ..."
Abstract

Cited by 107 (2 self)
 Add to MetaCart
Recent research has demonstrated the strong performance of hidden Markov models applied to information extraction  the task of populating database slots with corresponding phrases from text documents. A remaining problem, however, is the selection of statetransition structure for the model. This paper demonstrates that extraction accuracy strongly depends on the selection of structure, and presents an algorithm for automatically finding good structures by stochastic optimization. Our algorithm begins with a simple model and then performs hillclimbing in the space of possible structures by splitting states and gauging performance on a validation set. Experimental results show that this technique finds HMM models that almost always outperform a fixed model, and have superior average performance across tasks.
PartofSpeech Tagging and Partial Parsing
 CorpusBased Methods in Language and Speech
, 1996
"... m we can carve o# next. `Partial parsing' is a cover term for a range of di#erent techniques for recovering some but not all of the information contained in a traditional syntactic analysis. Partial parsing techniques, like tagging techniques, aim for reliability and robustness in the face of the va ..."
Abstract

Cited by 96 (0 self)
 Add to MetaCart
m we can carve o# next. `Partial parsing' is a cover term for a range of di#erent techniques for recovering some but not all of the information contained in a traditional syntactic analysis. Partial parsing techniques, like tagging techniques, aim for reliability and robustness in the face of the vagaries of natural text, by sacrificing completeness of analysis and accepting a low but nonzero error rate. 1 Tagging The earliest taggers [35, 51] had large sets of handconstructed rules for assigning tags on the basis of words' character patterns and on the basis of the tags assigned to preceding or following words, but they had only small lexica, primarily for exceptions to the rules. TAGGIT [35] was used to generate an initial tagging of the Brown corpus, which was then handedited. (Thus it provided the data that has since been used to train other taggers [20].) The tagger described by Garside [56, 34], CLAWS, was a probabilistic version of TAGGIT, and the DeRose tagger improved on
Markovian Models for Sequential Data
, 1996
"... Hidden Markov Models (HMMs) are statistical models of sequential data that have been used successfully in many machine learning applications, especially for speech recognition. Furthermore, in the last few years, many new and promising probabilistic models related to HMMs have been proposed. We firs ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
Hidden Markov Models (HMMs) are statistical models of sequential data that have been used successfully in many machine learning applications, especially for speech recognition. Furthermore, in the last few years, many new and promising probabilistic models related to HMMs have been proposed. We first summarize the basics of HMMs, and then review several recent related learning algorithms and extensions of HMMs, including in particular hybrids of HMMs with artificial neural networks, InputOutput HMMs (which are conditional HMMs using neural networks to compute probabilities), weighted transducers, variablelength Markov models and Markov switching statespace models. Finally, we discuss some of the challenges of future research in this very active area. 1 Introduction Hidden Markov Models (HMMs) are statistical models of sequential data that have been used successfully in many applications in artificial intelligence, pattern recognition, speech recognition, and modeling of biological ...
Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction
, 1998
"... We introduce an entropic prior for multinomial parameter estimation problems and solve for its maximum... ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
We introduce an entropic prior for multinomial parameter estimation problems and solve for its maximum...