Results 1  10
of
71
Four Results on Randomized Incremental Constructions
 Comput. Geom. Theory Appl
, 1993
"... We prove four results on randomized incremental constructions (RICs): ffl an analysis of the expected behavior under insertion and deletions, ffl a fully dynamic data structure for convex hull maintenance in arbitrary dimensions, ffl a tail estimate for the space complexity of RICs, ffl a lower ..."
Abstract

Cited by 92 (17 self)
 Add to MetaCart
We prove four results on randomized incremental constructions (RICs): ffl an analysis of the expected behavior under insertion and deletions, ffl a fully dynamic data structure for convex hull maintenance in arbitrary dimensions, ffl a tail estimate for the space complexity of RICs, ffl a lower bound on the complexity of a game related to RICs. 1
Arrangements and Their Applications
 Handbook of Computational Geometry
, 1998
"... The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arr ..."
Abstract

Cited by 78 (22 self)
 Add to MetaCart
The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arrangements to problems in motion planning, visualization, range searching, molecular modeling, and geometric optimization. Some results involving planar arrangements of arcs have been presented in a companion chapter in this book, and are extended in this chapter to higher dimensions. Work by P.A. was supported by Army Research Office MURI grant DAAH049610013, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.Israeli Binational Science Foundation. Work by M.S. was supported by NSF Grants CCR9122103 and CCR9311127, by a MaxPlanck Research Award, and by grants from the U.S.Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Ac...
Rounding Arrangements Dynamically
, 1995
"... We describe a robust, dynamic algorithm to compute the arrangement of a set of line segments in the plane, and its implementation. The algorithm is robust because, following Greene 1 and Hobby, 2 it rounds the endpoints and intersections of all line segments to representable points, but in a ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
We describe a robust, dynamic algorithm to compute the arrangement of a set of line segments in the plane, and its implementation. The algorithm is robust because, following Greene 1 and Hobby, 2 it rounds the endpoints and intersections of all line segments to representable points, but in a way that is globally topologically consistent. The algorithm is dynamic because, following Mulmuley, 3 it uses a randomized hierarchy of vertical cell decompositions to make locating points, and inserting and deleting line segments, efficient. Our algorithm is novel because it marries the robustness of the Greene and Hobby algorithms with Mulmuley's dynamic algorithm in a way that preserves the desirable properties of each. Keywords: arrangement, vertical trapezoidal decomposition, dynamic data structure, randomized algorithm, robustness, rounding 1.
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
Computing envelopes in four dimensions with applications
 SIAM J. Comput
, 1997
"... Abstract. Let F be a collection of ndvariate, possibly partially defined, functions, all algebraic of some constant maximum degree. We present a randomized algorithm that computes the vertices, edges, and 2faces of the lower envelope (i.e., pointwise minimum) of F in expected time O(n d+ε) for any ..."
Abstract

Cited by 42 (19 self)
 Add to MetaCart
Abstract. Let F be a collection of ndvariate, possibly partially defined, functions, all algebraic of some constant maximum degree. We present a randomized algorithm that computes the vertices, edges, and 2faces of the lower envelope (i.e., pointwise minimum) of F in expected time O(n d+ε) for any ε>0. For d = 3, by combining this algorithm with the pointlocation technique of Preparata and Tamassia, we can compute, in randomized expected time O(n 3+ε), for any ε>0, a data structure of size O(n 3+ε) that, for any query point q, can determine in O(log 2 n) time the function(s) of F that attain the lower envelope at q. As a consequence, we obtain improved algorithmic solutions to several problems in computational geometry, including (a) computing the width of a point set in 3space, (b) computing the “biggest stick ” in a simple polygon in the plane, and (c) computing the smallestwidth annulus covering a planar point set. The solutions to these problems run in randomized expected time O(n 17/11+ε), for any ε>0, improving previous solutions that run in time O(n 8/5+ε). We also present data structures for (i) performing nearestneighbor and related queries for fairly general collections of objects in 3space and for collections of moving objects in the plane and (ii) performing rayshooting and related queries among n spheres or more general objects in 3space. Both of these data structures require O(n 3+ε) storage and preprocessing time, for any ε>0, and support polylogarithmictime queries. These structures improve previous solutions to these problems.
Constructing Levels in Arrangements and Higher Order Voronoi Diagrams
 SIAM J. COMPUT
, 1994
"... We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bo ..."
Abstract

Cited by 42 (10 self)
 Add to MetaCart
We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the klevel in an arrangement of discs or xmonotone Jordan curves in the plane. Our approach can also be used to compute the klevel; this yields a randomized algorithm for computing the orderk Voronoi diagram of n points in the plane in expected time O(k(n \Gamma k) log n + n log 3 n).
The Design and Implementation of Planar Maps in CGAL
 Special Issue, selected papers of the Workshop on Algorithm Engineering (WAE
, 1999
"... this paper has been supported in part by ESPRIT IV LTR Projects No. 21957 (CGAL) and No. 28155 (GALIA), by the USAIsrael Binational Science Foundation, by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and its Applications), by ..."
Abstract

Cited by 39 (17 self)
 Add to MetaCart
this paper has been supported in part by ESPRIT IV LTR Projects No. 21957 (CGAL) and No. 28155 (GALIA), by the USAIsrael Binational Science Foundation, by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Center for Geometric Computing and its Applications), by a FrancoIsraeli research grant "factory of the future" (monitored by AFIRST/France and The Israeli Ministry of Science), and by the Hermann Minkowski  Minerva Center for Geometry at Tel Aviv University
Highlevel filtering for arrangements of conic arcs
 In Proc. ESA 2002
, 2002
"... Abstract. Many computational geometry algorithms involve the construction and maintenance of planar arrangements of conic arcs. Implementing a general, robust arrangement package for conic arcs handles most practical cases of planar arrangements covered in literature. A possible approach for impleme ..."
Abstract

Cited by 33 (9 self)
 Add to MetaCart
Abstract. Many computational geometry algorithms involve the construction and maintenance of planar arrangements of conic arcs. Implementing a general, robust arrangement package for conic arcs handles most practical cases of planar arrangements covered in literature. A possible approach for implementing robust geometric algorithms is to use exact algebraic number types — yet this may lead to a very slow, inefficient program. In this paper we suggest a simple technique for filtering the computations involved in the arrangement construction: when constructing an arrangement vertex, we keep track of the steps that lead to its construction and the equations we need to solve to obtain its coordinates. This construction history can be used for answering predicates very efficiently, compared to a naïve implementation with an exact number type. Furthermore, using this representation most arrangement vertices may be computed approximately at first and can be refined later on in cases of ambiguity. Since such cases are relatively rare, the resulting implementation is both efficient and robust. 1
Practical Segment Intersection with Finite Precision Output
 Comput. Geom. Theory Appl
, 1993
"... This paper presents simple solutions to these problems and shows that they impose only a very modest performance penalty. Test data came from a data compression problem involving a map database. ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
This paper presents simple solutions to these problems and shows that they impose only a very modest performance penalty. Test data came from a data compression problem involving a map database.
On lazy randomized incremental construction
 In Proc. 26th Annu. ACM Sympos. Theory Comput
, 1994
"... We introduce a new type of randomized incremental algorithms. Contrary to standard randomized incremental algorithms, these lazy randomized incremental algorithms are suited for computing structures that have a `nonlocal' definition. In order to analyze these algorithms we generalize some results o ..."
Abstract

Cited by 32 (8 self)
 Add to MetaCart
We introduce a new type of randomized incremental algorithms. Contrary to standard randomized incremental algorithms, these lazy randomized incremental algorithms are suited for computing structures that have a `nonlocal' definition. In order to analyze these algorithms we generalize some results on random sampling to such situations. We apply our techniques to obtain efficient algorithms for the computation of single cells in arrangements of segments in the plane, single cells in arrangements of triangles in space, and zones in arrangements of hyperplanes. We also prove combinatorial bounds on the complexity of what we call the (6k)cell in arrangements of segments in the plane or triangles in space; this is the set of all points on the segments (triangles) that can reach the origin with a path that crosses at most k, 1 segments (triangles).