Results 1  10
of
121
ExternalMemory Graph Algorithms
, 1995
"... We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for der ..."
Abstract

Cited by 185 (22 self)
 Add to MetaCart
We present a collection of new techniques for designing and analyzing efficient externalmemory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: ffl Proximateneighboring. We present a simple method for deriving externalmemory lower bounds via reductions from a problem we call the "proximate neighbors" problem. We use this technique to derive nontrivial lower bounds for such problems as list ranking, expression tree evaluation, and connected components. ffl PRAM simulation. We give methods for efficiently simulating PRAM computations in external memory, even for some cases in which the PRAM algorithm is not workoptimal. We apply this to derive a number of optimal (and simple) externalmemory graph algorithms. ffl Timeforward processing. We present a general technique for evaluating circuits (or "circuitlike" computations) in external memory. We also use this in a deterministic list rank...
Indexing moving points
, 2003
"... We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t; report all K points of S that lie inside R at time t: We first present an in ..."
Abstract

Cited by 184 (11 self)
 Add to MetaCart
We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t; report all K points of S that lie inside R at time t: We first present an indexing structure that, for any given constant e> 0; uses OðN=BÞ disk blocks and answers a query in OððN=BÞ 1=2þe þ K=BÞ I/Os, where B is the block size. It can also report all the points of S that lie inside R during a given time interval. A point can be inserted or deleted, or the trajectory of a point can be changed, in Oðlog 2 B NÞ I/Os. Next, we present a general approach that improves the query time if the queries arrive in chronological order, by allowing the index to evolve over time. We obtain a tradeoff between the query time and the number of times the index needs to be updated as the points move. We also describe an indexing scheme in which the number of I/Os required to answer a query depends monotonically on the difference between the query time stamp t and the current time. Finally, we develop an efficient indexing scheme to answer approximate
The buffer tree: A new technique for optimal I/Oalgorithms
 University of Aarhus
, 1995
"... ..."
(Show Context)
The String BTree: A New Data Structure for String Search in External Memory and its Applications.
 Journal of the ACM
, 1998
"... We introduce a new textindexing data structure, the String BTree, that can be seen as a link between some traditional externalmemory and stringmatching data structures. In a short phrase, it is a combination of Btrees and Patricia tries for internalnode indices that is made more effective by a ..."
Abstract

Cited by 137 (12 self)
 Add to MetaCart
We introduce a new textindexing data structure, the String BTree, that can be seen as a link between some traditional externalmemory and stringmatching data structures. In a short phrase, it is a combination of Btrees and Patricia tries for internalnode indices that is made more effective by adding extra pointers to speed up search and update operations. Consequently, the String BTree overcomes the theoretical limitations of inverted files, Btrees, prefix Btrees, suffix arrays, compacted tries and suffix trees. String Btrees have the same worstcase performance as Btrees but they manage unboundedlength strings and perform much more powerful search operations such as the ones supported by suffix trees. String Btrees are also effective in main memory (RAM model) because they improve the online suffix tree search on a dynamic set of strings. They also can be successfully applied to database indexing and software duplication.
Indexing for data models with constraints and classes
 Journal of Computer and System Sciences
, 1996
"... We examine I Oefficient data structures that provide indexing support for new data models. The database languages of these models include concepts from constraint programming (e.g., relational tuples are generated to conjunctions of constraints) and from objectoriented programming (e.g., objects a ..."
Abstract

Cited by 110 (18 self)
 Add to MetaCart
We examine I Oefficient data structures that provide indexing support for new data models. The database languages of these models include concepts from constraint programming (e.g., relational tuples are generated to conjunctions of constraints) and from objectoriented programming (e.g., objects are organized in class hierarchies). Let n be the size of the database, c the number of classes, B the page size on secondary storage, and t the size of the output of a query: (1) Indexing by one attribute in many constraint data models is equivalent to external dynamic interval management, which is a special case of external dynamic twodimensional range searching. We present a semidynamic data structure for this problem that has worstcase space O(n B) pages, query I O time O(logB n+t B) and O(logB n+(logB n) 2 B) amortized insert I O time. Note that, for the static version of this problem, this is the first worstcase optimal solution. (2) Indexing by one attribute and by class name in an objectoriented model, where objects are organized
Terrain simplification simplified: a general framework for viewdependent outofcore visualization.
 IEEE Transactions on Visualization and Computer Graphics,
, 2002
"... ..."
P,Pascucci V. Visualization of Large Terrains Made Easy [C
 In Proceedings of IEEE Visualization 2001
"... We present an elegant and simple to implement framework for performing outofcore visualization and viewdependent refinement of large terrain surfaces. Contrary to the recent trend of increasingly elaborate algorithms for largescale terrain visualization, our algorithms and data structures have ..."
Abstract

Cited by 88 (5 self)
 Add to MetaCart
(Show Context)
We present an elegant and simple to implement framework for performing outofcore visualization and viewdependent refinement of large terrain surfaces. Contrary to the recent trend of increasingly elaborate algorithms for largescale terrain visualization, our algorithms and data structures have been designed with the primary goal of simplicity and efficiency of implementation. Our approach to managing large terrain data also departs from more conventional strategies based on data tiling. Rather than emphasizing how to segment and efficiently bring data in and out of memory, we focus on the manner in which the data is laid out to achieve good memory coherency for data accesses made in a topdown (coarsetofine) refinement of the terrain. We present and compare the results of using several different data indexing schemes, and propose a simple to compute index that yields substantial improvements in locality and speed over more commonly used data layouts. Our second contribution is a new and simple, yet easy to generalize method for viewdependent refinement. Similar to several published methods in this area, we use longest edge bisection in a topdown traversal of the mesh hierarchy to produce a continuous surface with subdivision connectivity. In tandem with the refinement, we perform view frustum culling and triangle stripping. These three components are done together in a single pass over the mesh. We show how this framework supports virtually any error metric, while still being highly memory and compute efficient. 1
The Buffer Tree: A Technique for Designing Batched External Data Structures
, 2003
"... We present a technique for designing external memory data structures that support batched operations I/O efficiently. We show how the technique can be used to develop external versions of a search tree, a priority queue, and a segment tree, and give examples of how these structures can be used to d ..."
Abstract

Cited by 78 (14 self)
 Add to MetaCart
We present a technique for designing external memory data structures that support batched operations I/O efficiently. We show how the technique can be used to develop external versions of a search tree, a priority queue, and a segment tree, and give examples of how these structures can be used to develop I/Oefficient algorithms. The developed algorithms are either extremely simple or straightforward generalizations of known internal memory algorithms—given the developed external data structures.
I/O Optimal Isosurface Extraction
, 1997
"... In this paper we give I/Ooptimal techniques for the extraction of isosurfaces from volumetric data, by a novel application of the I/Ooptimal interval tree of Arge and Vitter. The main idea is to preprocess the dataset once and for all to build an efficient search structure in disk, and then each ti ..."
Abstract

Cited by 77 (17 self)
 Add to MetaCart
In this paper we give I/Ooptimal techniques for the extraction of isosurfaces from volumetric data, by a novel application of the I/Ooptimal interval tree of Arge and Vitter. The main idea is to preprocess the dataset once and for all to build an efficient search structure in disk, and then each time we want to extract an isosurface, we perform an outputsensitive query on the search structure to retrieve only those active cells that are intersected by the isosurface. During the query operation, only two blocks of main memory space are needed, and only those active cells are brought into the main memory, plus some negligible overhead of disk accesses. This implies that we can efficiently visualize very large datasets on workstations with just enough main memory to hold the isosurfaces themselves. The implementation is delicate but not complicated. We give the first implementation of the I/Ooptimal interval tree, and also implement our methods as an I/O filter for Vtk's isosurface ext...
Scalable Parallel Computational Geometry for Coarse Grained Multicomputers
 International Journal on Computational Geometry
, 1994
"... We study scalable parallel computational geometry algorithms for the coarse grained multicomputer model: p processors solving a problem on n data items, were each processor has O( n p ) AE O(1) local memory and all processors are connected via some arbitrary interconnection network (e.g. mesh, hype ..."
Abstract

Cited by 76 (13 self)
 Add to MetaCart
(Show Context)
We study scalable parallel computational geometry algorithms for the coarse grained multicomputer model: p processors solving a problem on n data items, were each processor has O( n p ) AE O(1) local memory and all processors are connected via some arbitrary interconnection network (e.g. mesh, hypercube, fat tree). We present O( Tsequential p + T s (n; p)) time scalable parallel algorithms for several computational geometry problems. T s (n; p) refers to the time of a global sort operation. Our results are independent of the multicomputer's interconnection network. Their time complexities become optimal when Tsequential p dominates T s (n; p) or when T s (n; p) is optimal. This is the case for several standard architectures, including meshes and hypercubes, and a wide range of ratios n p that include many of the currently available machine configurations. Our methods also have some important practical advantages: For interprocessor communication, they use only a small fixed numb...