Results 1  10
of
432
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 743 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 713 (0 self)
 Add to MetaCart
(Show Context)
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algorithms for convex hull and Delaunay triangulation. We provide empirical evidence that the algorithm runs faster when the input contains nonextreme points and that it uses less memory. Computational geometry algorithms have traditionally assumed that input sets are well behaved. When an algorithm is implemented with floatingpoint arithmetic, this assumption can lead to serious errors. We briefly describe a solution to this problem when computing the convex hull in two, three, or four dimensions. The output is a set of “thick ” facets that contain all possible exact convex hulls of the input. A variation is effective in five or more dimensions.
DavenportSchinzel Sequences and Their Geometric Applications
, 1998
"... An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \ ..."
Abstract

Cited by 439 (105 self)
 Add to MetaCart
An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \Delta \Delta a \Delta \Delta \Delta b \Delta \Delta \Delta of length s + 2 between two distinct symbols a and b. The close relationship between DavenportSchinzel sequences and the combinatorial structure of lower envelopes of collections of functions make the sequences very attractive because a variety of geometric problems can be formulated in terms of lower envelopes. A nearlinear bound on the maximum length of DavenportSchinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems.
Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces
, 1993
"... We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdim ..."
Abstract

Cited by 358 (5 self)
 Add to MetaCart
We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdimensional Euclidian settings in which the distribution of data is in some sense of lower dimension and embedded in the space. The vptree (vantage point tree) is introduced in several forms, together with associated algorithms, as an improved method for these difficult search problems. Tree construction executes in O(n log(n)) time, and search is under certain circumstances and in the limit, O(log(n)) expected time. The theoretical basis for this approach is developed and the results of several experiments are reported. In Euclidian cases, kdtree performance is compared.
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 266 (39 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
A Subexponential Bound for Linear Programming
 ALGORITHMICA
, 1996
"... We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected min{O(d 2 2 d n),e 2 d ln(n / d)+O ( d+ln n)} time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorith ..."
Abstract

Cited by 185 (15 self)
 Add to MetaCart
We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected min{O(d 2 2 d n),e 2 d ln(n / d)+O ( d+ln n)} time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorithm computes the lexicographically smallest nonnegative point satisfying n given linear inequalities in d variables. The expectation is over the internal randomizations performed by the algorithm, and holds for any input. In conjunction with Clarkson’s linear programming algorithm, this gives an expected bound of O(d 2 n + e O( √ d ln d) The algorithm is presented in an abstract framework, which facilitates its application to several other related problems like computing the smallest enclosing ball (smallest volume enclosing ellipsoid) of n points in dspace, computing the distance of two nvertex (or nfacet) polytopes in dspace, and others. The subexponential running time can also be established for some of these problems (this relies on some recent results due to Gärtner).
Combinatorial Geometry
, 1995
"... Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data stru ..."
Abstract

Cited by 185 (24 self)
 Add to MetaCart
(Show Context)
Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data structure for efficient answering of queries of the form, &quot;Given a 7 ~ F, count (or report) the points of P lying in 7.&quot; Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1 x/b+~) query time, where d < b < 2d 3 and ~> 0 is an arbitrarily small constant. The acutal value of b is related to the problem of partitioning arrangements of algebraic surfaces into cells with a constant description complexity. We present some of the applications of Frange searching problem, including improved ray shooting among triangles in ~3 1.
Incremental Topological Flipping Works for Regular Triangulations
 ALGORITHMICA
, 1996
"... A set of n weighted points in general position in Rd defines a unique regular triangulation. This paper proves that if the points are added one by one, then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence an ..."
Abstract

Cited by 181 (7 self)
 Add to MetaCart
A set of n weighted points in general position in Rd defines a unique regular triangulation. This paper proves that if the points are added one by one, then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most O(n log n+n ⌈d/2 ⌉). Under the assumption that the points and weights are independently and identically distributed, the expected running time is between proportional to and a factor log n more than the expected size of the regular triangulation. The expectation is over choosing the points and over independent coinflips performed by the algorithm.