Results 1  10
of
10
A New Representation for Exact Real Numbers
, 1997
"... We develop the theoretical foundation of a new representation of real numbers based on the infinite composition of linear fractional transformations (lft), equivalently the infiite product of matrices, with nonnegative coefficients. Any rational interval in the one point compactification of the rea ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
We develop the theoretical foundation of a new representation of real numbers based on the infinite composition of linear fractional transformations (lft), equivalently the infiite product of matrices, with nonnegative coefficients. Any rational interval in the one point compactification of the real line, represented by the unit circle S¹, is expressed as the image of the base interval [0�1] under an lft. A sequence of shrinking nested intervals is then represented by an infinite product of matrices with integer coefficients such that the first socalled sign matrix determines an interval on which the real number lies. The subsequent socalled digit matrices have nonnegative integer coe cients and successively re ne that interval. Based on the classi cation of lft's according to their conjugacy classes and their geometric dynamics, we show that there is a canonical choice of four sign matrices which are generated by rotation of S¹ by =4. Furthermore, the ordinary signed digit representation of real numbers in a given base induces a canonical choice of digit matrices.
Semantics of Exact Real Arithmetic
, 1997
"... In this paper, we incorporate a representation of the nonnegative extended real numbers based on the composition of linear fractional transformations with nonnegative integer coefficients into the Programming Language for Computable Functions (PCF) with products. We present two models for the exten ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
In this paper, we incorporate a representation of the nonnegative extended real numbers based on the composition of linear fractional transformations with nonnegative integer coefficients into the Programming Language for Computable Functions (PCF) with products. We present two models for the extended language and show that they are computationally adequate with respect to the operational semantics.
MSBFirst Digit Serial Arithmetic
, 1995
"... : We develop a formal account of digit serial number representations by describing them as strings from a language. A prefix of a string represents an interval approximating a number by enclosure. Standard online representations are shown to be a special case of the general digit serial representat ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
: We develop a formal account of digit serial number representations by describing them as strings from a language. A prefix of a string represents an interval approximating a number by enclosure. Standard online representations are shown to be a special case of the general digit serial representations. Matrices are introduced as representations of intervals and a finitestate transducer is used for mapping strings into intervals. Homographic and bihomographic functions are used for representing basic arithmetic operations on digit serial numbers, and finally a digit serial representation of floating point numbers is introduced. Key Words: Computer Arithmetic, Online Computation, Number Representations, Redundant Digit sets, Continued Fractions, Intervals. Category: B.2 1 Introduction A number is usually represented as a string of digits belonging to some digit set \Sigma . The number representation specifies a function that maps the string to its value. In the context of this pa...
Contractivity of Linear Fractional Transformations
 Third Real Numbers and Computers Conference (RNC3
, 1998
"... One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently c ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently contractive. In this paper, we define a notion of contractivity for LFT's. It is used for convergence theorems and for the analysis and improvement of algorithms for elementary functions. Keywords : Exact Real Arithmetic, Linear Fractional Transformations 1 Introduction Linear Fractional Transformations (LFT's) provide an elegant approach to real number arithmetic [8, 17, 11, 14, 12, 6]. Onedimensional LFT's x 7! ax+c bx+d are used in the representation of real numbers and to implement basic unary functions, while twodimensional LFT's (x; y) 7! axy+cx+ey+g bxy+dx+fy+h provide binary operations such as addition and multiplication, and can be combined to obtain infinite expression trees ...
Static Analyses of FloatingPoint Operations
 In SAS’01, volume 2126 of LNCS
, 2001
"... Computers manipulate approximations of real numbers, called floatingpoint numbers. The calculations they make are accurate enough for most applications. Unfortunately, in some (catastrophic) situations, the floatingpoint operations lose so much precision that they quickly become irrelevant. In thi ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Computers manipulate approximations of real numbers, called floatingpoint numbers. The calculations they make are accurate enough for most applications. Unfortunately, in some (catastrophic) situations, the floatingpoint operations lose so much precision that they quickly become irrelevant. In this article, we review some of the problems one can encounter, focussing on the IEEE7541985 norm. We give a (sketch of a) semantics of its basic operations then abstract them (in the sense of abstract interpretation) to extract information about the possible loss of precision. The expected application is abstract debugging of software ranging from simple onboard systems (which use more and more ontheshelf microprocessors with floatingpoint units) to scientific codes. The abstract analysis is demonstrated on simple examples and compared with related work. 1
The Appearance of Big Integers in Exact Real Arithmetic based on Linear Fractional Transformations
 In Proc. Foundations of Software Science and Computation Structures (FoSSaCS '98), volume 1378 of LNCS
, 1997
"... . One possible approach to exact real arithmetic is to use linear fractional transformations to represent real numbers and computations on real numbers. In this paper, we show that the bit sizes of the (integer) parameters of nearly all transformations used in computations are proportional to the nu ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
. One possible approach to exact real arithmetic is to use linear fractional transformations to represent real numbers and computations on real numbers. In this paper, we show that the bit sizes of the (integer) parameters of nearly all transformations used in computations are proportional to the number of basic computational steps executed so far. Here, a basic step means consuming one digit of the argument(s) or producing one digit of the result. 1 Introduction Linear Fractional Transformations (LFT's) provide an elegant approach to real number arithmetic [8, 16, 11, 14, 12, 6]. Onedimensional LFT's x 7! ax+c bx+d are used as digits and to implement basic functions, while twodimensional LFT's (x; y) 7! axy+cx+ey+g bxy+dx+fy+h provide binary operations such as addition and multiplication, and can be combined to infinite expression trees denoting transcendental functions. In Section 2, we present the details of the LFT approach. This provides the background for understanding the r...
LCF: A lexicographic binary representation of the rationals
 J. Universal Comput. Sci
, 1995
"... Abstract: A binary representation of the rationals derived from their continued fraction expansions is described and analysed. The concepts \adjacency", \mediant " and \convergent " from the literature on Farey fractions and continued fractions are suitably extended to provide a found ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Abstract: A binary representation of the rationals derived from their continued fraction expansions is described and analysed. The concepts \adjacency", \mediant " and \convergent " from the literature on Farey fractions and continued fractions are suitably extended to provide a foundation for this new binary representation system. Worst case representationinduced precision loss for any real number by a xed length representable number of the system is shown to be at most 19 % of bit word length, with no precision loss whatsoever induced in the representation of any reasonably sized rational number. The representation is supported by a computer arithmetic system implementing exact rational and approximate real computations in an online fashion.
Number systems and Digit Serial Arithmetic
, 1997
"... this paper. By introducing an extra termination symbol, which signals that an operand was merely terminated due to its length exceeding some bound, operands can be kept as intervals, representing an imprecise operand. Operands terminated in the ordinary way can be taken to represent exact numbers. T ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
this paper. By introducing an extra termination symbol, which signals that an operand was merely terminated due to its length exceeding some bound, operands can be kept as intervals, representing an imprecise operand. Operands terminated in the ordinary way can be taken to represent exact numbers. The cube modeling a function of two variables, can be generalized to a hypercube modeling a polyhomographic function of n variables. For n = 3 the function is defined as: