Results 1 
5 of
5
The Role of Relativization in Complexity Theory
 Bulletin of the European Association for Theoretical Computer Science
, 1994
"... Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and progr ..."
Abstract

Cited by 42 (9 self)
 Add to MetaCart
Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and program checking results and try to understand why they do not relativize. We give some new results that may help us to understand these questions better.
The Structure of Complete Degrees
, 1990
"... This paper surveys investigations into how strong these commonalities are. More concretely, we are concerned with: What do NPcomplete sets look like? To what extent are the properties of particular NPcomplete sets, e.g., SAT, shared by all NPcomplete sets? If there are are structural differences ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
This paper surveys investigations into how strong these commonalities are. More concretely, we are concerned with: What do NPcomplete sets look like? To what extent are the properties of particular NPcomplete sets, e.g., SAT, shared by all NPcomplete sets? If there are are structural differences between NPcomplete sets, what are they and what explains the differences? We make these questions, and the analogous questions for other complexity classes, more precise below. We need first to formalize NPcompleteness. There are a number of competing definitions of NPcompleteness. (See [Har78a, p. 7] for a discussion.) The most common, and the one we use, is based on the notion of mreduction, also known as polynomialtime manyone reduction and Karp reduction. A set A is mreducible to B if and only if there is a (total) polynomialtime computable function f such that for all x, x 2 A () f(x) 2 B: (1) 1
Completeness for Nondeterministic Complexity Classes
, 1991
"... We demonstrate differences between reducibilities and corresponding completeness notions for nondeterministic time and space classes. For time classes the studied completeness notions under polynomialtime bounded (even logarithmic space bounded) reducibilities turn out to be different for any class ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
We demonstrate differences between reducibilities and corresponding completeness notions for nondeterministic time and space classes. For time classes the studied completeness notions under polynomialtime bounded (even logarithmic space bounded) reducibilities turn out to be different for any class containing NE . For space classes the completeness notions under logspace reducibilities can be separated for any class properly containing LOGSPACE . Key observation in obtaining the separations is the honesty property of reductions, which was recently observed to hold for the time classes and can be shown to hold for space classes. 1 Introduction Efficient reducibilities and completeness are two of the central concepts of complexity theory. Since the first use of polynomial time bounded Turing reductions by Cook [4] and the introduction of polynomial time bounded manyone reductions by Karp[9], considerable effort has been put in the investigation of properties and the relative strengt...
Naïve computational type theory
 Proof and SystemReliability, Proceedings of International Summer School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series III
, 2002
"... The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts of the basic ideas of type theory, especially at the interface of computer science and logic — specifically, in the literature of programming languages, semantics, formal methods and automated reasoning. Most of these are very technical, dense with formulas, inference rules, and computation rules. Here we follow the example of the mathematician Paul Halmos, who in 1960 wrote a 104page book called Naïve Set Theory intended to make the subject accessible to practicing mathematicians. His book served many generations well. This article follows the spirit of Halmos ’ book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos ’ book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery. In type theory, “naïve ” and “formal ” are contrasting words. The present treatment might best be described as informal type theory from a naïve point of view. The concepts are very general and very abstract; therefore they may
Naïve Type Theory
, 2002
"... This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist ..."
Abstract
 Add to MetaCart
This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery