Results 11  20
of
150
A Calculus of Communicating Systems with Label Passing
, 1986
"... This report is essential Uffe Engbergs thesis for the MSc degree from Department of Computer Science, Aarhus University except that all proofs of theorems have been left out. Should anyone have interest in particular proofs, they may be obtained by contacting one of the authors. 1 Introduction ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
This report is essential Uffe Engbergs thesis for the MSc degree from Department of Computer Science, Aarhus University except that all proofs of theorems have been left out. Should anyone have interest in particular proofs, they may be obtained by contacting one of the authors. 1 Introduction
The Lazy Lambda Calculus in a Concurrency Scenario (Extended Abstract)
 Information and Computation
, 1994
"... ) Davide Sangiorgi LFCS  Department of Computer Science Edinburgh University Edinburgh  EH9 3JZ  UK Abstract The use of lambda calculus in richer settings, possibly involving parallelism, is examined in terms of its effect on the equivalence between lambda terms. We concentrate here on Abra ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
) Davide Sangiorgi LFCS  Department of Computer Science Edinburgh University Edinburgh  EH9 3JZ  UK Abstract The use of lambda calculus in richer settings, possibly involving parallelism, is examined in terms of its effect on the equivalence between lambda terms. We concentrate here on Abramsky's lazy lambda calculus and we follow two directions. First, the lambda calculus is studied within a process calculus by examining the equivalence $ induced by Milner's encoding into the calculus. We give exact operational and denotational characterizations for $. Secondly, we examine Abramsky's applicative bisimulation when the lambda calculus is augmented with (wellformed) operators, i.e. symbols equipped with reduction rules describing their behaviour. Then, maximal discrimination is obtained when all operators are considered; we show that this discrimination coincides with the one given by $ and that the adoption of certain nondeterministic operators is sufficient and necessary...
Classical Logic, Continuation Semantics and Abstract Machines
, 1998
"... Machines Th. STREICHER Fachbereich 4 Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, streiche@mathematik.thdarmstadt.de B. REUS Institut fur Informatik, LudwigMaximiliansUniversitat, Oettingenstr. 67, D80538 Munchen, reus@informatik.unimuenchen.de Abstract One of the ..."
Abstract

Cited by 51 (4 self)
 Add to MetaCart
Machines Th. STREICHER Fachbereich 4 Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, streiche@mathematik.thdarmstadt.de B. REUS Institut fur Informatik, LudwigMaximiliansUniversitat, Oettingenstr. 67, D80538 Munchen, reus@informatik.unimuenchen.de Abstract One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped callbyname calculus with Felleisen's control operator C. We derive the transition rules for an abstract machine from a continuation semantics which appears as a generalization of the ::translation known from logic. The resulting abstract machine appears as an extension of Krivine's Machine implementing head reduction. Though the result, namely Krivine's Machine, is well known our method of deriving it from continuation semantics is new and applicable to other languages (as e.g. callbyvalue variants).
Pure bigraphs: structure and dynamics
, 2005
"... Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a c ..."
Abstract

Cited by 50 (5 self)
 Add to MetaCart
Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that behavioural analysis for Petri nets, πcalculus and mobile ambients can all be recovered in the uniform framework of bigraphs. The paper first develops the dynamic theory of an abstract structure, a wide reactive system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined in such a way that the induced bisimilarity is a congruence. This work is then specialised to Brss, whose graphical structure allows many refinements of the theory. The latter part of the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via labelled transitions. As a running example, the theory is applied to finite pure CCS, whose resulting transition system and bisimilarity are analysed in detail. The paper also mentions briefly the use of bigraphs to model pervasive computing and
Effective Flow Analysis for Avoiding RunTime Checks
 In Proceedings of the 1995 International Static Analysis Symposium
, 1995
"... . This paper describes a general purpose program analysis that computes global controlflow and dataflow information for higherorder, callbyvalue programs. This information can be used to drive global program optimizations such as inlining and runtime check elimination, as well as optimizations ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
. This paper describes a general purpose program analysis that computes global controlflow and dataflow information for higherorder, callbyvalue programs. This information can be used to drive global program optimizations such as inlining and runtime check elimination, as well as optimizations like constant folding and loop invariant code motion that are typically based on specialpurpose local analyses. The analysis employs a novel approximation technique called polymorphic splitting that uses letexpressions as syntactic clues to gain precision. Polymorphic splitting borrows ideas from HindleyMilner polymorphic type inference systems to create an analog to polymorphism for flow analysis. Experimental results derived from an implementation of the analysis for Scheme indicate that the analysis is extremely precise and has reasonable cost. In particular, it eliminates significantly more runtime checks than simple flow analyses (i.e. 0CFA) or analyses based on type ...
A lambda calculus for quantum computation
 SIAM Journal of Computing
"... The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propos ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propose that quantum computation, like its classical counterpart, may benefit from a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In this paper we develop a quantum lambda calculus as an alternative model of quantum computation, which combines some of the benefits of both the quantum Turing machine and the quantum circuit models. The calculus turns out to be closely related to the linear lambda calculi used in the study of Linear Logic. We set up a computational model and an equational proof system for this calculus, and we argue that it is equivalent to the quantum Turing machine.
Proofassistants using Dependent Type Systems
, 2001
"... this article we will not attempt to describe all the dierent possible choices of type theories. Instead we want to discuss the main underlying ideas, with a special focus on the use of type theory as the formalism for the description of theories including proofs ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
this article we will not attempt to describe all the dierent possible choices of type theories. Instead we want to discuss the main underlying ideas, with a special focus on the use of type theory as the formalism for the description of theories including proofs
Intuitionistic Model Constructions and Normalization Proofs
, 1998
"... We investigate semantical normalization proofs for typed combinatory logic and weak calculus. One builds a model and a function `quote' which inverts the interpretation function. A normalization function is then obtained by composing quote with the interpretation function. Our models are just like ..."
Abstract

Cited by 44 (7 self)
 Add to MetaCart
We investigate semantical normalization proofs for typed combinatory logic and weak calculus. One builds a model and a function `quote' which inverts the interpretation function. A normalization function is then obtained by composing quote with the interpretation function. Our models are just like the intended model, except that the function space includes a syntactic component as well as a semantic one. We call this a `glued' model because of its similarity with the glueing construction in category theory. Other basic type constructors are interpreted as in the intended model. In this way we can also treat inductively defined types such as natural numbers and Brouwer ordinals. We also discuss how to formalize terms, and show how one model construction can be used to yield normalization proofs for two different typed calculi  one with explicit and one with implicit substitution. The proofs are formalized using MartinLof's type theory as a meta language and mechanized using the A...
Flowdirected Inlining
 In Proceedings of the ACM Conference on Programming Language Design and Implementation
, 1996
"... A flowdirected inlining strategy uses information derived from controlflow analysis to specialize and inline procedures for functional and objectoriented languages. Since it uses controlflow analysis to identify candidate call sites, flowdirected inlining can inline procedures whose relationship ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
A flowdirected inlining strategy uses information derived from controlflow analysis to specialize and inline procedures for functional and objectoriented languages. Since it uses controlflow analysis to identify candidate call sites, flowdirected inlining can inline procedures whose relationships to their call sites are not apparent. For instance, procedures defined in other modules, passed as arguments, returned as values, or extracted from data structures can all be inlined. Flowdirected inlining specializes procedures for particular call sites, and can selectively inline a particular procedure at some call sites but not at others. Finally, flowdirected inlining encourages modular implementations: controlflow analysis, inlining, and postinlining optimizations are all orthogonal components. Results from a prototype implementation indicate that this strategy effectively reduces procedure call overhead and leads to significant reduction in execution time. 1 Introduction Functio...
SetTheoretical and Other Elementary Models of the lambdacalculus
 Theoretical Computer Science
, 1993
"... Part 1 of this paper is the previously unpublished 1972 memorandum [43], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the ficalculus. F ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
Part 1 of this paper is the previously unpublished 1972 memorandum [43], with editorial changes and some minor corrections. Part 2 presents what happened next, together with some further development of the material. The first part begins with an elementary settheoretical model of the ficalculus. Functions are modeled in a similar way to that normally employed in set theory, by their graphs; difficulties are caused in this enterprise by the axiom of foundation. Next, based on that model, a model of the fijcalculus is constructed by means of a natural deduction method. Finally, a theorem is proved giving some general properties of those nontrivial models of the fijcalculus which are continuous complete lattices. The second part begins with a brief discussion of models of the calculus in set theories with antifoundation axioms. Next the model of the fi calculus of Part 1 and also the closely relatedbut different!models of Scott [53, 54] and of Engeler [21, 22] are reviewed....